The Performance of the Pivotal Voter Model in Small Scale Elections: Evidence from Texas Liquor Referenda

Andrea Moro (with Stephen Coate and Michael Conlin)

SUNY-Stony Brook, November 28, 2006

Question

 How well does the pivotal voter model of electoral turnout perform in small scale elections?

• Ledyard (1984): rational voters motivated by the chance they might swing the election in a strategic environment + incomplete information

 We estimate the parameters of the model using data from Texas liquor liberalization referenda

Motivation

• Palfrey and Rosenthal (1985): as the number of eligible voters goes to infinity, only those with negative or zero cost vote

 This results is often used to dismiss the model as a reasonable explanation of voter turnout in large elections (Green and Shapiro 1984, Feddersen 2004)

 However this does not mean that it is in not a good model in small scale elections

Next: other -2-

Other theories of voter turnout

- The Group-based models: groups coordinate their turnout
 - "Ethical" models (Feddersen and Sandroni 2002): everybody follows the rule maximizing the groups' aggregate payoff
 - "Mobilization" models (Shachar and Nalebuff): leaders organize followers
- Expressive voting theories
 - The intensity model: voters are more likely to vote if they feel more strongly about the issue

Empirical regularities regarding turnout

- Strong relationship to sociodemographic variables (Ashenfelter and Kelly 1975, Rosenstone 1980)
- Likelihood of being decisive: conflicting evidence
 No: Ashenfelter and Kelly (1975);

Yes: Silberman and Durden (1975), Rosenthal and Sen (1973)

- More direct test: Hansen, Palfrey and Rosenthal (1987) assume a symmetric pivotal model and use only "close" elections.
- Experimental approach: Levine and Palfrey (2005)
- Technical difficulties + Hard to find the right data

The data we have

• Coate and Conlin (2004) assembled data on 366 local liquor referenda in Texas between 1976 and 1996.

Prior to the referendum the local jurisdiction prohibited the sale of alcohol

- Until 2001 liquor referenda were held on special dates, different than standard election days
- Additional information about jurisdictions from the Census (more details later)

Data - turnout

Voter turnout as a percent of eligible voters: (Yes + No)/Eligible

Data - turnout

	Eligible voters n	N. of obs.	Perc. turnout
"C II"	n < 247	48	0.62
"Small" jurisdictions	247 < n < 434	48	0.55
julisaletions	434 < n < 900	48	0.43
	900 < n < 2245	72	0.32
"Large"	2245 < n < 5170	72	0.23
jurisdictions	5189 < n < 30000	72	0.18
	n > 30000	6	0.26

Data - closeness

Percent vote difference: (Yes - No)/(Yes + No)

The pivotal voter model

- ullet Citizens, indexed by $i \in \{1,...,n\}$ vote to relax liquor restrictions
- ullet μ : Probability citizen i is a supporter
- b : Supporters' willingness to pay for the relaxation
- \bullet x: Opposers' willingness to pay to avoid the relaxation
- $c_i \sim U[0,c]$: Cost of voting for citizen i
- Each citizen knows her cost, but only knows the distribution of costs of the other citizens

The pivotal voter model (cont.)

• Strategy: $f : [0, c] \times \{\text{supporter,opposer}\} \rightarrow \{\text{vote,abstain}\}$

- Focus on symmetric equilibria, where all supporters and opposers use the same strategy
- W.I.o.g assume they use a "cutoff" strategy:

supporter
$$i$$
 votes if $c_i \leq \gamma_s^*$ opposer i votes if $c_i \leq \gamma_o^*$

The probability of an election outcome

• P(s): probability that s of the other n-1 voters are supporters

$$P(s) = {n-1 \choose s} \mu^s (1-\mu)^{n-1-s}$$

The probability of an election outcome

• P(s): probability that s of the other n-1 voters are supporters

$$P(s) = {n-1 \choose s} \mu^s (1-\mu)^{n-1-s}$$

• $\rho(Yes, No; \gamma_s^*, \gamma_o^*)$: probability Yes supporters vote, and No opposers vote

$$= \sum_{s=Yes}^{n-1-No} P(s) \qquad {s \choose Yes} \left(\frac{\gamma_s^*}{c}\right)^{Yes} \left(1 - \frac{\gamma_s^*}{c}\right)^{s-Yes}$$
$${n-1-s \choose No} \left(\frac{\gamma_o^*}{c}\right)^{No} \left(1 - \frac{\gamma_o^*}{c}\right)^{n-1-s-No}$$

Equilibrium conditions

Assume n even, supporters win when outcome is tied

Expected benefit to a supporter

$$\sum_{v=1}^{n/2}
ho(v-1,v;\gamma_s^*,\gamma_o^*) \cdot b = \gamma_s^*$$

Expected benefit to an opposer

$$\sum_{v=0}^{\overline{n/2-1}} \rho(v,v;\gamma_s^*,\gamma_o^*) \cdot x = \gamma_o^*$$

The data

• 366 local liquor elections in Texas between 1976 and 1996 where prior to the election the voting jurisdictions prohibited the retail sale of all alcohol.

Jurisdiction	N	Voters	Supporters win	Close elections*
Small	144	< 900	65	28
Large	222	> 900	87	64

^{* &}lt; 10% margin of victory

 Additional information from the U.S. Census and Churches & Church Membership in the U.S.

The data: additional info

	Small jurisdictions	Large jurisdictions
Number of referenda	144	222
Jurisdiction characteristics		
Voting age population	370 (200)	6,539 (8,742)
Fraction of baptists	52% (11)	46% (14)
Located in an MSA	44% (50)	43% (50)
Incorporated city or town	95% (22)	42% (50)
Referendum characteristics		
Beer/wine	46% (50)	37% (48)
Off-premise	40% (49)	39% (49)
Off- and on-premise	15% (35)	24% (43)
More liberal than county	42% (49)	28% (45)
Held on weekend	68% (47)	72% (45)
	•	

- 15 *-*

Paper: Table 1, page 10

Identification

4 parameters: b, x, μ, c

- ullet Only relative prices matter c=1
- The magnitude of b, x affect turnout
- ullet b-x and μ are separately identified because their effect varies with the size of the jurisdiction
 - e.g. when turnout is high, the vote share is close to μ , the fraction of supporters, and b-x has not much effect
 - when turnout is low, then both μ and b-x affect the vote share.

Estimation

• For each jurisdiction j, we assume:

supporter's benefit
$$b_j = \exp\left(oldsymbol{eta}^b \cdot \mathbf{z}_j^b\right)$$
 opposer's benefit $x_j = \exp\left(oldsymbol{eta}^x \cdot \mathbf{z}_j^x\right)$ fraction of supporters $\mu_j = \frac{\exp\left(oldsymbol{eta}^\mu \cdot \mathbf{z}_j^\mu\right)}{1 + \exp\left(oldsymbol{eta}^\mu \cdot \mathbf{z}_j^\mu\right)}$ cost distribution upper bound $c_j = \exp\left(eta^c \cdot z_j^c\right)$

Variables used:

 $\mathbf{z}^b, \mathbf{z}^x = 1$, off-premise, off/on-premise, city, more liberal than cty. $\mathbf{z}^\mu = 1$, fraction of baptists, MSA $z^c =$ election on weekend (c normalized)

The likelihood

- ullet observables \mathbf{z}_j determine b_j, x_j, μ_j, c_j for each jurisdiction j
- ullet The equilibrium conditions determine a set of M_j equilibria
- Use an (arbitrary) equilibrium selection rule denote the selected equilibrium $(\gamma_{sj}^*, \gamma_{oj}^*)$.
- Likelihood of observing an outcome conditional on equilibrium thresholds $(\gamma_{sj}^{m*}, \gamma_{oj}^{m*})$

$$L(\Omega) = \prod_{j} \rho(Yes_{j}, No_{j}; \gamma_{sj}^{*}, \gamma_{oj}^{*})$$

Next: results

Results: parameters

Parameter/Variable (In $L:-5694.21$)		Estimate	Marg. Eff.
$\overline{\mu}$:	Fraction of baptists	-0.058 (0.188)	-0.015
	Located in an MSA	-0.089 (0.072)	-0.022
	Constant	0.062 (0.097)	
<i>b</i> :	Off-premise	0.182 (0.086)	2.85
	Off- and on-premise	-0.642 (0.232)	-7.89
	Incorporated city or town	1.819 (0.354)	13.68
	More liberal than county	0.199 (0.068)	3.15
	Constant	0.875 (0.405)	
\overline{x} :	Off-premise consumption	0.097 (0.082)	1.56
	Off- and on-premise	-0.589 (0.253)	-7.58
	Incorporated city or town	1.791 (0.340)	13.97
	More liberal than county	0.361 (0.062)	5.90
	Constant	0.886 (0.370)	
<i>c</i> :	Held on weekend	-0.172 (0.085)	-0.16

Paper: Table 2, page 17

Results: mean estimates

Parameter	Mean estimate	
Fraction of supporters μ	0.500 (0.011)	
Supporters' benefit \emph{b}	15.52 (4.81)	
Opposers' benefit \boldsymbol{x}	15.90 (5.12)	
Upper bound on cost \emph{c}	0.892 (0.074)	
Supporters that vote $rac{\gamma_s}{c}$	0.516 (0.167)	
Opposers that vote $rac{\gamma_o}{c}$	0.530 (0.174)	

An average voting cost (c/2) of \$10 implies b = \$348 and x = \$357

Multiplicity of equilibria not salient.

Goodness of fit, turnout

Eligible voters n	N. of obs.	Data	Pivotal-voter
Lligible voters It	IN. OI ODS.	Data	model
n < 247	48	0.62	0.65
247 < n < 434	48	0.55	0.51
434 < n < 900	48	0.43	0.40
All $n < 900$	144	0.54	0.52
900 < n < 2245	72	0.32	0.19
2245 < n < 5170	72	0.23	0.11
5189 < n < 30000	72	0.18	0.08
n > 30000	6	0.26	0.06

Turnout, mean estimates

The model is, in principle, capable of generating "high" turnout

Goodness of fit, closeness

Goodness of fit, closeness by size

The intensity model

- α = strength of voters' desire for policy.
- As before: cost $c_i \sim U[0, c]$, fraction of supporters μ , benefit to supp. b, benefit to opp. x.
- Voter *i* votes if

$$c_i \leq \alpha b$$

$$c_i \leq \alpha x$$

Note: α constant in size (makes it more difficult to match data)

Intensity model, parameter estimates

Parameter / Variable (In L : -4567.0)		Estimate	Marginal Effect
$\overline{\mu}$:	Fraction of baptists	-0.076 (0.117)	-0.0001
	Located in an MSA	-0.038 (0.024)	-0.074
	Constant	-0.798 (0.076)	
αb :	Off-premise	0.133 (0.019)	0.115
	Off- and on-premise	-0.213 (0.032)	-0.170
	Incorporated city or town	0.612 (0.040)	0.404
	More liberal than county	0.036 (0.019)	0.031
	Constant	-0.780 (0.051)	
$\overline{\alpha x}$:	Off-premise	0.055 (0.015)	0.021
	Off- and on-premise	-0.581 (0.032)	-0.177
	Incorporated city or town	0.219 (0.285)	0.075
	More liberal than county	0.296 (0.015)	0.113
	Constant	-1.277 (0.033)	
<i>c</i> :	Held on weekend	0.027 (0.012)	0.028

Paper: Table 5, page 22

Intensity model, mean estimates

Parameter	Mean estimate
Fraction of supporters μ	0.423 (0.043)
Supporters' expressive benefit αb	0.585 (0.138)
Opposers' expressive benefit αx	0.504 (0.137)
Upper bound on cost \emph{c}	1.005 (0.003)
Supporters that vote $\frac{\gamma_s}{c}$	0.583 (0.138)
Opposers that vote $rac{\gamma_o}{c}$	0.501 (0.137)

Paper: Table 6, page 23

Intensity model, goodness of fit, turnout

Eligible voters n	N. of Obs.	Data	Intensity model
n < 247	48	0.62	0.50
247 < n < 434	48	0.55	0.52
434 < n < 900	48	0.43	0.49
All $(n < 900)$	144	0.54	0.50

Closeness, comparison between models

A Vuong non-nested models test of the null hypothesis that the two models are equally close to the true dgp does not reject the null 0 - it does if we make α depend on size)

Closeness, comparison, by size

Conclusion

- The pivotal voter model seems to be able to perform well in predicting turnout
- It does not perform well in predicting closeness of the election
- A simple model based on expressive voting does better
- The dependency of turnout on size does not necessarily depend on the strategic nature of the voting choice.