Wage Gaps and Test Score Differences: Incentives or Pre-Market Factors?

Andrea Moro (joint with Peter Norman)

Federal Reserve Board, Washington DC, January 27, 2005

The question

- Empirically disentangle two different sources of racial wage inequality
 - 1. Pre-market factors (Neal and Johnson, JPE 96)
 - 2. Incentives to acquire human capital

 Horse-race between the two hypotheses using a model of statistical discrimination that nests the two explanations.

The question

- Empirically disentangle two different sources of racial wage inequality
 - 1. Pre-market factors (Neal and Johnson, JPE 96)
 - 2. Incentives to acquire human capital

- Horse-race between the two hypotheses using a model of statistical discrimination that nests the two explanations.
- Other explanations: racism (Bowlus & Eckstein 2002), initial conditions/catching up

• Black/white wage gap has been roughly stable since the 80s (problem for the "catching up" hypothesis)

Black/white wage gap has been roughly stable since the 80s (problem for the "catching up" hypothesis)

• Much of the difference is "explained" by differences in "human-capital-like" variables such as schooling and test-scores

- Black/white wage gap has been roughly stable since the 80s (problem for the "catching up" hypothesis)
- Much of the difference is "explained" by differences in "human-capital-like" variables such as schooling and test-scores

- Black/white wage gap has been roughly stable since the 80s (problem for the "catching up" hypothesis)
- Much of the difference is "explained" by differences in "humancapital-like" variables such as schooling and test-scores
- "Returns to AFQT" the same for blacks and whites. Neal & Johnson argues that this is evidence against statistical discrimination.

- Black/white wage gap has been roughly stable since the 80s (problem for the "catching up" hypothesis).
- Much of the difference is "explained" by differences in "humancapital-like" variables such as schooling and test-scores
- "Returns to AFQT" the same for blacks and whites. Neal & Johnson argues that this is evidence against statistical discrimination .

The standard argument

- We can observe measures of skill (e.g. AFQT)
- If minorities appear to have lower returns to skill, they have less incentives to invest in skills
- Test: look at difference in returns to skill between groups: if they are insignificant, then statistical discrimination is rejected

Examples: Neal and Johnson (JPE 1996), Persico, Postlewaite and Silverman (2004)

Problem with the argument

 Measures of skill are not perfectly correlated with market valued skills.

• Presumably, the econometrician cannot observe the same signals that employers observe

• Using a different signal introduces an "error in variable" bias.

A simple model to illustrate the problem

- Human capital investment $h \in \{0, 1\}$
- Cost of investment, worker $i \sim G$ is C(i) = i
- Workers with human capital are called qualified and produce 1; unqualified produce 0
- Competitive firms observe only a noisy signal of productivity $z \in \{good, bad\}$

A simple model to illustrate the problem

- Human capital investment $h \in \{0, 1\}$
- Cost of investment, worker $i \sim G$ is C(i) = i
- Workers with human capital are called qualified and produce 1; unqualified produce 0
- Competitive firms observe only a noisy signal of productivity $z \in \{good, bad\}$

Type of worker	Probability of obtaining $z = good$
Qualified	p_q
Unqualified	$p_u < p_q$

Incentives to invest in human capital

- \bullet $\pi^J=$ proportion of people who invest in group J
- Firms pay expected productivity, computed using Bayes' rule:

$$w^{J}(good; \pi^{J}) = \frac{\pi^{J} p_{q}}{(1 - \pi^{J}) p_{u} + \pi^{J} p_{q}}$$

$$w^{J}(bad; \pi^{J}) = \frac{\pi^{J} (1 - p_{q})}{\pi^{J} (1 - p_{q}) + (1 - \pi^{J}) (1 - p_{u})}$$

Incentives to invest in human capital

- \bullet $\pi^J=$ proportion of people who invest in group J
- Firms pay expected productivity, computed using Bayes' rule:

$$w^{J}(good; \pi^{J}) = \frac{\pi^{J} p_{q}}{(1 - \pi^{J}) p_{u} + \pi^{J} p_{q}}$$

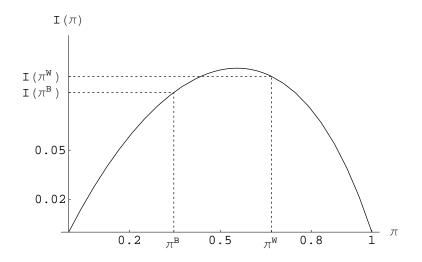
$$w^{J}(bad; \pi^{J}) = \frac{\pi^{J} (1 - p_{q})}{\pi^{J} (1 - p_{q}) + (1 - \pi^{J}) (1 - p_{u})}$$

Incentives to invest :

$$I(\pi^{J}) = E_{z} \left[w^{J}(z; \pi^{J}) | \text{invest} \right] - E \left[w^{J}(z; \pi^{J}) | \text{don't} \right]$$
$$= (p_{q} - p_{u}) \left[w^{J}(good; \pi^{J}) - w^{J}(bad; \pi^{J}) \right]$$

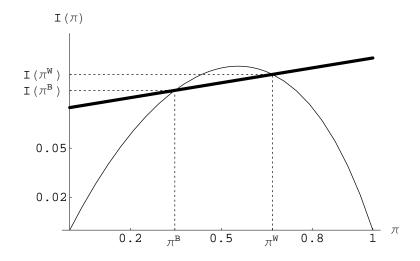
Incentives to invest in human capital

Example drawn using $p_q = .8$ and $p_u = .5$.



Equilibrium

Example drawn using $p_q = .8$ and $p_u = .5$.



Using an appropriate distribution of costs G (thick line) we can support a pair of equilibrium fraction of investors $\pi^B < \pi^W$ so that

$$\pi^J = G(I(\pi^J))$$

The econometric problem

Consider an econometrician observing $x \in \{HIGH, LOW\}$, independent from the firms' signal

Type of worker	Probability of obtaining $x = HIGH$
Qualified	r_q
Unqualified	$r_u < r_q$

Returns to the observable measure of skill

The econometrician can measure:

$$R^{J}(\pi^{J}) = E[w^{J}|HIGH] - E[w^{J}|LOW]$$

Proposition: $R^J(\pi^J) < I^I(\pi^J)$

Returns to the observable measure of skill

The econometrician can measure:

$$R^{J}(\pi^{J}) = E[w^{J}|HIGH] - E[w^{J}|LOW]$$

Proposition: $R^J(\pi^J) < I^I(\pi^J)$

Intuition:

HIGH workers may have "firm's signal" good or bad.

$$\implies E[w^J|HIGH] < w^J(good)$$

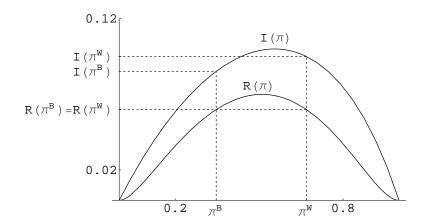
LOW workers may have firm's signal good, or bad,

$$\implies E[w^J|LOW] > w^J(bad)$$

The possibility of an erroneous conclusion

The bias depends on π .

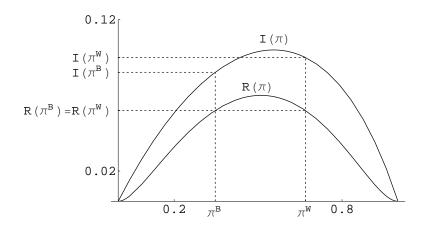
Using
$$\underline{p_q = 0.8, p_u = 0.5}$$
, $\underline{r_q = 0.8, r_u = 0.1}$ Econometrician's signal



The possibility of an erroneous conclusion

The bias depends on π .

Using
$$p_q = 0.8, p_u = 0.5, \quad r_q = 0.8, r_u = 0.1$$
Firm's signal Econometrician's signal



Note: the econometrician's signal is more informative signal than firms'signal

The Model to be Estimated

 \bullet Continuous human capital ${\color{blue}h}$. Cost of h is $C(h,k)={\color{blue}h/k}$, $\ln(k)=N(\mu_k,\sigma_k)$

- Signal observed by firms: $z = \ln(h) + \varepsilon$, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$
- Preferences u(w,h) = In w c(h,k)
- Competitive firms w(z) = E[h|z]

Looking for a Log-Normal Equilibrium

Assume log normal h (later verify this is the case) with mean/var. μ_h, σ_h^2

$$z = \ln(h) + \varepsilon \Longrightarrow f(\ln(h)|z) = N\left(\mu_h \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_k^2} + z \frac{\sigma_k^2}{\sigma_{\varepsilon}^2 + \sigma_k^2}, \left(\frac{\sigma_k^2 \sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_k^2}\right)^2\right)$$

Wages are log-linear in z:

$$w(z) = E(h|z) = \exp\left(\frac{\alpha}{\mu_h \frac{\sigma_\varepsilon^2}{\sigma_\varepsilon^2 + \sigma_k^2}} + z \frac{\sigma_k^2}{\frac{\sigma_\varepsilon^2 + \sigma_k^2}{\beta}} + \frac{1}{2} \frac{\sigma_k^2 \sigma_\varepsilon^2}{\sigma_\varepsilon^2 + \sigma_k^2}\right)$$

$$\ln(w) = \alpha + \beta \cdot z$$

Workers' problem

Expected utility linear in ln(h):

$$E_z \left[\ln \left(w \left(z \right) \right) | h \right] = E_z \left[\alpha + \beta z | h \right] =$$

$$E_z \left[\alpha + \beta (\ln(h) + \varepsilon) | h \right] = \alpha + \beta E_z \left(z | h \right) = \alpha + \beta \ln h$$

$$\max_{h \ge 0} \alpha + \beta \ln(h) - \frac{h}{k}$$

$$\implies h(k) = \beta k$$

i.e. human capital is indeed lognormal, $\ln(h) \sim N(\mu_k + \ln(\beta), \sigma_k^2)$

Restriction imposed by the equilibrium

Stdev of log
$$h:\sigma_h=$$
 σ_k Mean of log $h:\mu_h=$ $\mu_k+\ln\beta=\mu_k+\ln\left(\frac{\sigma_h^2}{\sigma_\varepsilon^2+\sigma_h^2}\right)$
$$=\mu_i+\ln\left(\frac{\sigma_k^2}{\sigma_\varepsilon^2+\sigma_k^2}\right).$$

Equilibrium

Model has unique log-normal equilibrium (generating log-linear wages).

For any $(\mu_k, \sigma_k, \sigma_{\varepsilon})$ there is an equilibrium where

$$h(k) = \beta k$$

 $w(z) = \exp(\alpha + \beta z),$

where

$$\alpha \equiv \mu_h \frac{\sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_k^2} + \frac{1}{2} \frac{\sigma_k^2 \sigma_{\varepsilon}^2}{\sigma_{\varepsilon}^2 + \sigma_k^2}$$
$$\beta \equiv \frac{\sigma_k^2}{\sigma_{\varepsilon}^2 + \sigma_k^2}.$$

In this equilibrium, $\ln h \sim N\left(\mu_k + \ln \beta, \sigma_k^2\right)$.

The econometric problem

Assume that the econometrician observes a proxy of skill

$$x = \ln h + \delta$$
,

where $\delta \sim N\left(0, \sigma_{\delta}^{2}\right)$ is assumed to be independent of ε .

• Since $\ln h = z - \varepsilon$ it follows immediately that

$$x = z - \varepsilon + \delta,$$

which means that a standard OLS regression of wages on AFQT scores leads to a downwards biased estimate of β in the equilibrium wage function.

Error in variable bias

- $x = \ln(h) + \delta$: econometrician's variable
- $z = \ln(h) + \varepsilon$: firms' signal
- $ln(w) = \alpha + \beta z = \alpha + \beta x + \beta(-\delta + \varepsilon)$
- ullet The regressor (x) is correlated with the disturbance

$$\Rightarrow p \lim(b_{LS}) = \beta \cdot \frac{\sigma_k^2}{\sigma_\delta^2 + \sigma_k^2} = \frac{\sigma_k^2}{\sigma_\varepsilon^2 + \sigma_k^2} \frac{\sigma_k^2}{\sigma_\delta^2 + \sigma_k^2}$$

Data

NLSY79, 15 to 18 in 1980. Wages observed in 1991.

	< Hi	gh Sc.	High	ı Sc.	College	e or more
	Black	White	Black	White	Black	White
Obs.	(75)	(109)	(323)	(483)	(52)	(219)
E[In(wage)]	6.46	6.64	6.61	6.84	7.06	7.12
SD[In(wage)]	0.33	0.41	0.44	0.4	0.39	0.42
E[AFQT]	-1.1	-0.71	-0.61	0.34	0.46	1.3
SD[AFQT]	0.51	0.69	0.73	0.77	0.81	0.54
Corr[wage,AFQT]	0.04	0.4	0.18	0.17	0.41	0.22

Identification strategy

• We observe AFQT, not \times , therefore assume for some C, D:

$$C + D \cdot AFQT_i = \ln(h_i) + \delta_i$$

- Assume wages are observed with measurement error $u \sim N(\mathbf{0}, \sigma_u^2)$
- Restrict some parameters to be identical across groups: C, D, σ_{δ}
- Use restrictions implied by the model and its equilibrium

10 parameters to be estimated

- $\mu_k^B, \mu_k^W, \sigma_k^{2B}, \sigma_k^{2W}$: distributions of the investment cost
- $\sigma_{\varepsilon}^{2B}, \sigma_{\varepsilon}^{2W}$: the variance in firms' signal
- σ_u^2 : measurement error in wage data
- C, D, σ_{δ}^2 : scaling of AFQT and variance of scaled test

10 parameters to be estimated

- $\mu_k^B, \mu_k^W, \sigma_k^{2B}, \sigma_k^{2W}$: distributions of the investment cost
- $\sigma_{\varepsilon}^{2B}, \sigma_{\varepsilon}^{2W}$: the variance in firms' signal
- σ_u^2 : measurement error in wage data
- C, D, σ_{δ}^2 : scaling of AFQT and variance of scaled test

We can then compute incentives using equilibrium restriction

$$\beta^{J} = \frac{\sigma_{k}^{J2}}{\sigma_{\varepsilon}^{J2} + \sigma_{k}^{J2}}, J = B, W$$

Identifying Conditions

$$p \lim(b_{LS}^{J}) = D\beta^{J} \frac{\sigma_{k}^{2J}}{\sigma_{k}^{2J} + \sigma_{\delta}^{2}}$$

$$\ln(E[w^{J}]) = \mu_{k}^{J} + \ln \beta^{J} + \frac{\sigma_{k}^{2J}}{2}$$

$$Var[\ln(w^{J})] = \beta^{J} \sigma_{k}^{2J} + \sigma_{u}^{2}$$

$$C + D \cdot E[AFQT^{J}] = \mu_{k}^{J} + \ln(\beta^{J})$$

$$D^{2}VAR[AFQT^{J}] = VAR[\ln(h^{J})] = \sigma_{k}^{2J} + \sigma_{\delta}^{2}$$

10 conditions in 10 unknowns, but not all parameters are identified

What we can identify

High School Sample	Estimates	Stderr
D	0.199	0.037
$\sigma_k^{2W} - \sigma_k^{2B}$	0.0023	0.0025
$\mu_k^W + \ln(eta^W) - \left(\mu_k^B + \ln(eta^B) ight)$	0.189	0.036
$eta^B \sigma_k^{2B}$	0.0113	0.0045
$eta^W \sigma_k^{2W}$	0.0106	0.0037
σ_u^{2B}	0.178	0.022
σ_u^{2W}	0.147	0.011

Additional restrictions from the model

Use $\beta < 1$ and $\sigma_{\delta} > 0$ to provide an upper bound for σ_k and a lower bound for β

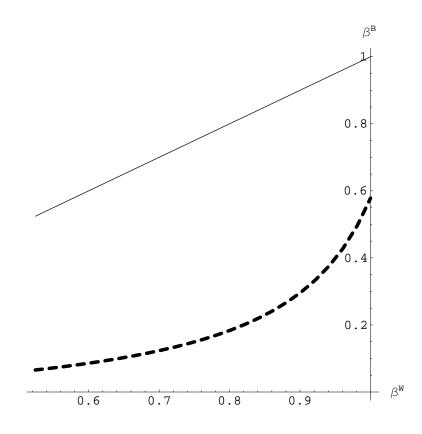
High School	Estimates	Stderr
\underline{eta}^B	0.532	0.210
$\overline{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ } ^{eta^W}$	0.452	0.171

< High School	Estimates	Stderr
\underline{eta}^B	0.065	0.179
$-\!$	0.524	0.296

Scenarios, less than high school sample

Solid line: β^W

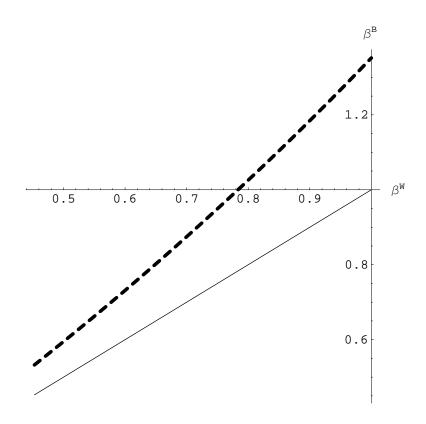
Dotted line $\beta^B(\beta^W)$



Scenarios, high school sample

Solid line: β^W

Dotted line $\beta^B(\beta^W)$



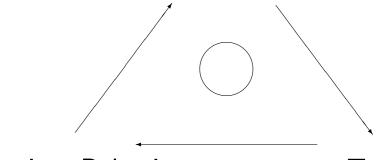
Conclusion

- A naive look at returns to observable (to the investigator's) may give us biased conclusions about the importance of statistical discrimination
- We look at the data with the guidance of the restrictions imposed by a formal equilibrium model
- Even if we don't achieve full identification, we can provide some clues
- Preliminary results: black high school graduate are statistically discriminated against, but not black high school dropouts

The End

Statistical discrimination: a theory of self fulfilling stereotypes

Stereotypes-Beliefs (Avg. Human Capital)



Incentives-Behavior (Human Capital Investment)

Treatment (wage-employment)

Incomplete information is crucial.

Data, full sample

Full Sample

	Black	White
N. of obs.	466	825
E[wage]	6.64	6.89
SD[wage]	0.46	0.43
E[AFQT]	-0.57	0.44
SD[AFQT]	0.82	0.93
Corr[wage,AFQT]	0.34	0.38