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The question

• Empirically disentangle two different sources of racial wage in-

equality

1. Pre-market factors (Neal and Johnson, JPE 96)

2. Incentives to acquire human capital

• Horse-race between the two hypotheses using a model of

statistical discrimination that nests the two explanations.

• Other explanations: racism (Bowlus & Eckstein 2002), initial con-

ditions/catching up
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Facts

• Black/white wage gap has been roughly stable since the 80s (prob-

lem for the “catching up” hypothesis)

• Much of the difference is “explained” by differences in “human-

capital-like” variables such as schooling and test-scores

ln(wages), NLSY males, 1991

Black −0.244 (0.026) −0.072 (0.027)

AFQT 0.172 (0.012)

• “Returns to AFQT” the same for blacks and whites. Neal & John-

son argues that this is evidence against statistical discrimination.
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The standard argument

• We can observe measures of skill (e.g. AFQT)

• If minorities appear to have lower returns to skill, they have less

incentives to invest in skills

• Test: look at difference in returns to skill between groups: if they

are insignificant, then statistical discrimination is rejected

Examples: Neal and Johnson (JPE 1996), Persico, Postlewaite and

Silverman (2004)
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Problem with the argument

• Measures of skill are not perfectly correlated with market valued

skills.

• Presumably, the econometrician cannot observe the same signals

that employers observe

• Using a different signal introduces an “error in variable” bias.
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A simple model to illustrate the problem

• Human capital investment h ∈ {0, 1}

• Cost of investment, worker i ∼ G is C(i) = i

• Workers with human capital are called qualified and produce 1;

unqualified produce 0

• Competitive firms observe only a noisy signal of productivity

z ∈ {good, bad}

Type of worker Probability of obtaining z =good

Qualified pq

Unqualified pu < pq
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Incentives to invest in human capital

• πJ = proportion of people who invest in group J

• Firms pay expected productivity, computed using Bayes’ rule:

wJ(good; πJ) =
πJ pq(

1− πJ
)

pu + πJ pq

wJ(bad; πJ) =
π J (1− pq)

π J (1− pq) +
(
1− πJ

)
(1− pu)

• Incentives to invest:

I(πJ) = Ez

[
wJ(z; πJ)|invest

]
− E

[
wJ(z; πJ)|don’t

]

= (pq − pu)
[
wJ(good; πJ)− wJ(bad; πJ)

]
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Incentives to invest in human capital

Example drawn using pq = .8 and pu = .5.

0.2
Π
B 0.5 1

Π
W 0.8

Π

0.02

0.05

IHΠBL
IHΠWL

IHΠL

Using an appropriate distribution of costs G (thick line) we can support

a pair of equilibrium fraction of investors πB < πW so that

πJ = G(I(πj))

7



Equilibrium

Example drawn using pq = .8 and pu = .5.

0.2
Π
B 0.5 1

Π
W 0.8

Π

0.02

0.05

IHΠBL
IHΠWL

IHΠL

Using an appropriate distribution of costs G (thick line) we can support

a pair of equilibrium fraction of investors πB < πW so that

πJ = G(I(πJ))
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The econometric problem

Consider an econometrician observing x ∈ {HIGH, LOW} , indepen-

dent from the firms’ signal

Type of worker Probability of obtaining x =HIGH

Qualified rq

Unqualified ru < rq
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Returns to the observable measure of skill

The econometrician can measure:

RJ(πJ) = E[wJ |HIGH]− E[wJ |LOW ]

Proposition: RJ(πJ) < II(πJ)

Intuition:

HIGH workers may have “firm’s signal” good or bad.

=⇒ E[wJ |HIGH] < wJ(good)

LOW workers may have firm’s signal good, or bad,

=⇒ E[wJ |LOW ] > wJ(bad)
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The possibility of an erroneous conclusion

The bias depends on π.

Using pq = 0.8, pu = 0.5︸ ︷︷ ︸
Firm’s signal

, rq = 0.8, ru = 0.1︸ ︷︷ ︸
Econometrician’s signal

0.2
Π
B

Π
W 0.8

0.02

0.12

RHΠBL=RHΠWL

IHΠBL
IHΠWL

IHΠL

RHΠL

Note: the econometrician’s signal is more informative signal than

firms’signal
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The Model to be Estimated

• Continuous human capital h . Cost of h is C(h, k) = h/k , ln(k) =

N(µk, σk)

• Signal observed by firms: z = ln(h) + ε, ε ∼ N(0, σ2
ε)

• Preferences u(w, h) = ln w −c(h, k)

• Competitive firms w (z) = E [h|z]
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Looking for a Log-Normal Equilibrium

Assume log normal h (later verify this is the case) with mean/var.

µh, σ2
h

z = ln(h) + ε =⇒ f(ln(h)|z) = N

(
µh

σ2
ε

σ2
ε+σ2

k

+ z
σ2

k
σ2

ε+σ2
k

,

(
σ2

kσ2
ε

σ2
ε+σ2

k

)2
)

Wages are log-linear in z:

w(z) = E(h|z) = exp




α︷ ︸︸ ︷
µh

σ2
ε

σ2
ε + σ2

k

+ z
σ2

k

σ2
ε + σ2

k︸ ︷︷ ︸
β

+

α︷ ︸︸ ︷
1

2

σ2
kσ2

ε

σ2
ε + σ2

k




ln(w) = α + β · z
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Workers’ problem

Expected utility linear in ln(h):

Ez [ln (w (z)) |h] = Ez [α + βz|h] =

Ez [α + β(ln(h) + ε)|h] = α + βEz (z|h) = α + β ln h

max
h≥0

α + β ln (h)− h

k
=⇒ h (k) = βk

i.e. human capital is indeed lognormal, ln(h) ∼ N(µk + ln(β), σ2
k)
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Restriction imposed by the equilibrium

Stdev of log h : σh = σk

Mean of log h : µh = µk + ln β = µk + ln

(
σ2

h

σ2
ε + σ2

h

)

= µi + ln

(
σ2

k

σ2
ε + σ2

k

)
.
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Equilibrium

Model has unique log-normal equilibrium (generating log-linear wages).

For any (µk, σk, σε) there is an equilibrium where

h (k) = βk

w (z) = exp(α + βz),

where

α ≡ µh
σ2

ε

σ2
ε + σ2

k

+
1

2

σ2
kσ2

ε

σ2
ε + σ2

k

β ≡ σ2
k

σ2
ε + σ2

k

.

In this equilibrium, ln h ∼ N
(
µk + ln β, σ2

k

)
.
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The econometric problem

• Assume that the econometrician observes a proxy of skill

x = ln h + δ,

where δ ∼ N
(
0, σ2

δ

)
is assumed to be independent of ε.

• Since ln h = z − ε it follows immediately that

x = z − ε + δ,

which means that a standard OLS regression of wages on AFQT

scores leads to a downwards biased estimate of β in the equilibrium

wage function.
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Error in variable bias

• x = ln(h) + δ: econometrician’s variable

• z = ln(h) + ε: firms’ signal

• ln(w) = α + βz = α + βx + β(−δ + ε)

• The regressor (x) is correlated with the disturbance

⇒ p lim(bLS) = β · σ2
k

σ2
δ + σ2

k

=
σ2

k

σ2
ε + σ2

k

σ2
k

σ2
δ + σ2

k
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Data

NLSY79, 15 to 18 in 1980. Wages observed in 1991.

< High Sc. High Sc. College or more

Black White Black White Black White

Obs. (75) (109) (323) (483) (52) (219)

E[ln(wage)] 6.46 6.64 6.61 6.84 7.06 7.12

SD[ln(wage)] 0.33 0.41 0.44 0.4 0.39 0.42

E[AFQT] -1.1 -0.71 -0.61 0.34 0.46 1.3

SD[AFQT] 0.51 0.69 0.73 0.77 0.81 0.54

Corr[wage,AFQT] 0.04 0.4 0.18 0.17 0.41 0.22

18
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Identification strategy

• We observe AFQT, not x, therefore assume for some C, D :

C + D ·AFQTi = ln(hi) + δi

• Assume wages are observed with measurement error

u ∼ N(0, σ2
u)

• Restrict some parameters to be identical across groups: C, D, σδ

• Use restrictions implied by the model and its equilibrium
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10 parameters to be estimated

• µB
k , µW

k , σ2B
k , σ2W

k : distributions of the investment cost

• σ2B
ε , σ2W

ε : the variance in firms’ signal

• σ2
u: measurement error in wage data

• C, D, σ2
δ: scaling of AFQT and variance of scaled test

We can then compute incentives using equilibrium restriction

βJ =
σJ2

k

σJ2
ε + σJ2

k

, J = B, W
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Identifying Conditions

p lim(bJ
LS) = DβJ σ2J

k

σ2J
k + σ2

δ

ln(E[wJ ]) = µJ
k + ln βJ +

σ2J
k

2
V ar[ln(wJ)] = βJσ2J

k + σ2
u

C + D · E[AFQT J ] = µJ
k + ln(βJ)

D2V AR[AFQT J ] = V AR[ln(hJ)] = σ2J
k + σ2

δ

10 conditions in 10 unknowns, but not all parameters are identified
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What we can identify

High School Sample Estimates Stderr

D 0.199 0.037

σ2W
k − σ2B

k 0.0023 0.0025

µW
k + ln(βW )−

(
µB

k + ln(βB)
)

0.189 0.036

βBσ2B
k 0.0113 0.0045

βWσ2W
k 0.0106 0.0037

σ2B
u 0.178 0.022

σ2W
u 0.147 0.011
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Additional restrictions from the model

Use β < 1 and σδ > 0 to provide an upper bound for σk and a lower

bound for β

High School Estimates Stderr

βB 0.532 0.210

βW 0.452 0.171

< High School Estimates Stderr

βB 0.065 0.179

βW 0.524 0.296
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Scenarios, less than high school sample

Solid line: βW

Dotted line βB(βW )

0.6 0.7 0.8 0.9
ΒW

0.2

0.4

0.6

0.8

1

ΒB
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Scenarios, high school sample

Solid line: βW

Dotted line βB(βW )

0.5 0.6 0.7 0.8 0.9
ΒW

0.6

0.8

1.2

ΒB
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Conclusion

• A naive look at returns to observable (to the investigator’s) may

give us biased conclusions about the importance of statistical dis-

crimination

• We look at the data with the guidance of the restrictions imposed

by a formal equilibrium model

• Even if we don’t achieve full identification, we can provide some

clues

• Preliminary results: black high school graduate are statistically

discriminated against, but not black high school dropouts
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The End
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Statistical discrimination: a theory of self

fulfilling stereotypes

Stereotypes-Beliefs
(Avg. Human Capital)

Treatment
(wage-employment)

Incentives-Behavior
(Human Capital Investment)

S
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S
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Incomplete information is crucial.
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Data, full sample

Full Sample

Black White

N. of obs. 466 825

E[wage] 6.64 6.89

SD[wage] 0.46 0.43

E[AFQT] -0.57 0.44

SD[AFQT] 0.82 0.93

Corr[wage,AFQT] 0.34 0.38
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