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Topic of interest

Quantitatively measure of how different sources of discrimination
contribute to wage inequality

Today

Present a simple model of statistical discrimination.
Estimate the model using NLSY data

How much does statistical discrimination contribute to wage in-

equality?

Statistical discrimination as self fulfilling stereotypes

Beliefs
/
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Human Capital —— Wages

o Incomplete information is crucial (we don't observe human
capital investment).

e In equilibrium, minority workers have lower incentives to ac-
quire human capital.

A standard argument

e We observe measures of skill (e.g. AFQT, education), and
minorities have lower average skill

e Use returns to skill as a proxy for returns to human capital
investment.

e Test : look at difference in returns to skill between groups: if
they are insignificant, then statistical discrimination is rejected

Examples

e Derek Neal and William Johnson (JPE 1996) on racial differ-
ences: returns to AFQT are not significantly different between
black and white workers.

e Nicola Persico, Andrew Postlewaite, and Dan Silverman (2002)
on height wage differences (a similar test).

Problem with the argument (Moro and Norman, 2003)

e Measures of skill are not perfectly correlated with ability or
productivity.

e The econometrician cannot observe the same signals that em-
ployers have

e The econometrician’s estimate of the returns to his signal of
productivity is a biased measure of the return to the firms’
signal

The bias is different across groups




A model of statistical discrimination

Continuous human capital h

Cost of h C(h,3) =1, In(5) = N(u;, 05)
Firms’ observe signal z =In(h) +¢, e~ N(0,0¢)
Preferences u(w, h) = In(w) — c(h, 1)
Technology production = h

Perfectly competitive labor mkts.

Equilibrium

Assume In(h) ~ N(up, op) (later verify this is the case)

Firms' signal x = In(h) + ¢
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Log wages are linear in x:

In(w(z))=a+pB- =

Workers’ problem
u(w, h) = In(w) — c(h, 1) =>Expected utility linear in In(h):

Ez[in(w(x))|h] = Ezla+ Bz|h] = a+ BEx (z|h)
a+ BlIn(h)

Workers's choice of human capital:

h
In(h) ——
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= h(i))=p8-1
= In(h (i) =1In(B)+ In(3)

With h (¢) = 8 - ¢ human capital is indeed lognormal

In(h) ~ N(u; + In(3),0;), hence consistency requires:
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Summary
e We can compute only one equilibrium (there may be others)

e Our approach: use exogenous differences to rationalize differ-
ence in behavior

eg o8 >l = EB(h) < EW(h)
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Econometricians observe a different signal

True d.g.p:
In {w;](w)} =a’ + 8z,
T; = |n(h7) + &€~ N(O, 0‘5)
But the investigator observes

z = In(h;) + 6

6; ~ N(0,05)




Data

NLSY 79, 1990 wages and test scores of young males aged less
than 18 when they took the test (1980)

Likelihood Function

Hence given a dataset D = {wi,zi}i]\il our log likelihood is

Test: AFQT (verbal, math and arithmetic skills) (04, 0c, iy, 05| D) = Z log [f(Inw;, 2)]
i=1L,N
= ) log f(Inwilz;) + log f(2;)
Black White i=1,N
Observations 466 825
w) = Average(log(w)) 6.64 6.89
o) = Stdev(log(w)) .46 43
o = Stdev(log(z)) .82 .93
Bls 0.19 (.02) | 0.18 (.02)
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Simulations
Results
Black Whites Question: what happens if there were no informational differences,
(cost parameters) . 2.103871 5.062817 i.e. if the employers had a “race-neutral” test?
P i (.0005601)  (.0560569)
o; 13.61844 12.18787 Average Wage Black Whites A
(0742783)  (0602092) Data 853.4 1075.6 2022
N 862.3624  781.4184 , — : - :
(firms' signal) o (76.65127)  (38.2517) Experiment 1 02 = o¥ — 940.2 1075.6 135.4
= = . b_ w_ o¥4o
(econometrician’s signal) o5 ("g) ("g) Experiment 2 0 = o)/ = =5—= 894.7 1023.3 128.6
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l.e. “Statistical discrimination” accounts for about 40% of the
wage differential

The bias of OLS regression

b=

Coun(zi, In(wi))
Vary(z)

Coun(z;, In(w;)) = Coun (Inh;+ 6;,a+ B(Inh; +€;))

BCovn(Inh;, Inh;) + BCoun(In by, e;)

+B8Coun (8, In h;) + BCovN(6;,€;)
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