Empirical Implications of Statistical Discrimination on the Returns to Measures of Skill

Andrea Moro and Peter Norman

(U. of Minnesota - U. of Wisconsin, Madison)

June 2003

0

Topic of interest

Quantitatively measure of how different sources of discrimination contribute to wage inequality

Today

Present a simple model of statistical discrimination.

Estimate the model using NLSY data

How much does statistical discrimination contribute to wage inequality?

1

Statistical discrimination as self fulfilling stereotypes

- Incomplete information is crucial (we don't observe human capital investment).
- In equilibrium, minority workers have lower incentives to acquire human capital.

2

A standard argument

- We observe measures of skill (e.g. AFQT, education), and minorities have lower average skill
- Use returns to skill as a proxy for returns to human capital investment.
- Test: look at difference in returns to skill between groups: if they are insignificant, then statistical discrimination is rejected

3

Examples

- Derek Neal and William Johnson (JPE 1996) on racial differences: returns to AFQT are not significantly different between black and white workers.
- Nicola Persico, Andrew Postlewaite, and Dan Silverman (2002) on height wage differences (a similar test).

Problem with the argument (Moro and Norman, 2003)

- Measures of skill are not perfectly correlated with ability or productivity.
- The econometrician cannot observe the same signals that employers have
- The econometrician's estimate of the returns to his signal of productivity is a biased measure of the return to the firms' signal
- The bias is different across groups

5

A model of statistical discrimination

Continuous human capital h

Cost of h $C(h,i) = \frac{h}{i}, \ln(i) = N(\mu_i, \sigma_i)$

Firms' observe signal $x = \ln(h) + \varepsilon, \, \varepsilon \sim N(0, \sigma_{\varepsilon})$

Preferences $u(w,h) = \ln(w) - c(h,i)$

Technology production = h

Perfectly competitive labor mkts.

Equilibrium

Assume $\ln(h) \sim N(\mu_h, \sigma_h)$ (later verify this is the case)

Firms' signal $x = \ln(h) + \varepsilon$

$$\implies f(\ln(h)|x) = N \left(\mu_h \frac{\sigma_\varepsilon^2}{\sigma_\varepsilon^2 + \sigma_h^2} + x \frac{\sigma_h^2}{\sigma_\varepsilon^2 + \sigma_h^2} \right), \quad \frac{\sigma_h \sigma_\varepsilon}{\left(\sigma_\varepsilon^2 + \sigma_h^2\right)^{\frac{1}{2}}}$$

$$w(x) = E(h|x) = \exp\left(\mu_h \frac{\sigma_\varepsilon^2}{\sigma_\varepsilon^2 + \sigma_h^2} + x \frac{\sigma_h^2}{\sigma_\varepsilon^2 + \sigma_h^2} + \frac{1}{2} \frac{\sigma_h^2 \sigma_\varepsilon^2}{\sigma_\varepsilon^2 + \sigma_h^2}\right)$$

Log wages are linear in x:

$$\ln(w(x)) = \alpha + \beta \cdot x$$

Workers' problem

 $u(w,h) = \ln(w) - c(h,i) \Longrightarrow \text{Expected utility linear in } \ln(h)$:

$$E_x \left[\ln \left(w \left(x \right) \right) | h \right] = E_x \left[\alpha + \beta x | h \right] = \alpha + \beta E_x \left(x | h \right)$$
$$= \alpha + \beta \ln \left(h \right)$$

Workers's choice of human capital:

$$\max_{h \ge 0} \alpha + \beta \ln(h) - \frac{h}{i}$$

$$\implies h(i) = \beta \cdot i$$

$$\implies \ln(h(i)) = \ln(\beta) + \ln(i)$$

With $h\left(i\right)=\beta\cdot i$ human capital is indeed lognormal

 $\ln(h) \sim N(\mu_i + \ln(\beta), \sigma_i)$, hence consistency requires:

$$\begin{array}{rcl} \sigma_h & = & \sigma_i \\ \mu_h & = & \mu_i + \ln \beta = \mu_i + \ln \left(\frac{\sigma_i^2}{\sigma_z^2 + \sigma_z^2} \right). \end{array}$$

Note:

$$\beta = \frac{\sigma_i^2}{\sigma_\varepsilon^2 + \sigma_i^2}$$

Summary

 \bullet We can compute only one equilibrium (there may be others)

Our approach: use exogenous differences to rationalize difference in behavior

e.g.
$$\sigma_{arepsilon}^B > \sigma_{arepsilon}^W \Rightarrow E^B(h) < E^W(h)$$

Econometricians observe a different signal

True d.g.p:

$$\ln\left[w_i^J(x)\right] = \alpha^J + \beta^J x_i$$

$$x_i = \ln(h_i) + \varepsilon_i, \varepsilon_i \sim N(0, \sigma_{\varepsilon})$$

But the investigator observes

$$z_i = \ln(h_i) + \delta_i$$

$$\delta_i \sim N(0, \sigma_{\delta})$$

10

11

Data

NLSY 79, 1990 wages and test scores of young males aged less than 18 when they took the test (1980)

Test: AFQT (verbal, math and arithmetic skills)

	Black	White
Observations	466	825
$\overline{w}^j = Average(log(w))$	6.64	6.89
$\sigma_w^J \equiv Stdev(log(w))$.46	.43
$\sigma_z^J \equiv Stdev(log(z))$.82	.93
\widehat{eta}_{LS}^{J}	0.19 (.02)	0.18 (.02)

Likelihood Function

Hence given a dataset $D = \{w_i, z_i\}_{i=1}^N$ our log likelihood is

$$\begin{split} l\big(\sigma_i, \sigma_\varepsilon, \mu_h, \sigma_\delta | D\big) &= \sum_{i=1,N} \log \left[f(\ln w_i, z_i) \right] \\ &= \sum_{i=1,N} \log f(\ln w_i | z_i) + \log f(z_i) \end{split}$$

13

Results

		Black	Whites
(cost parameters)	μ_i	4.103871	5.062817
		(.0905601)	(.0560569)
	σ_i	13.61844	12.18787
		(.0742783)	(.0602092)
(firms' signal)	$\sigma_{arepsilon}$	862.3624	781.4184
		(76.65127)	(38.2517)
(econometrician's signal)	σ_{δ}	~0	~0
		(~0)	(~0)

Simulations

Question: what happens if there were no informational differences, i.e. if the employers had a "race-neutral" test?

Average Wage	Black	Whites	Δ
Data	853.4	1075.6	222.2
Experiment 1 $\sigma_{arepsilon}^b = \widehat{\sigma_{arepsilon}^w}$	940.2	1075.6	135.4
Experiment 2 $\sigma_{\varepsilon}^b = \sigma_{\varepsilon}^w = \frac{\widehat{\sigma_{\varepsilon}^w} + \widehat{\sigma_{\varepsilon}^b}}{2}$	894.7	1023.3	128.6

I.e. "Statistical discrimination" accounts for about 40% of the wage differential

15

The bias of OLS regression

$$\hat{b} = \frac{Cov_N(z_i, \ln(w_i))}{Var_N(z_i)}$$

$$\begin{split} Cov_N(z_i, \ln(w_i)) &= Cov_N \left(\ln h_i + \delta_i, \alpha + \beta (\ln h_i + \varepsilon_i) \right) \\ &= \beta Cov_N \left(\ln h_i, \ln h_i \right) + \beta Cov_N (\ln h_i, \varepsilon_i) \\ &+ \beta Cov_N \left(\delta_i, \ln h_i \right) + \beta Cov_N \left(\delta_i, \varepsilon_i \right) \end{split}$$

$$\mathrm{p\,lim}(\hat{b}) = \beta \left(\frac{\sigma_i^2}{\sigma_{\hat{\epsilon}}^2 + \sigma_i^2} \right) = \frac{\sigma_i^2}{\sigma_{\varepsilon}^2 + \sigma_i^2} \cdot \frac{\sigma_i^2}{\sigma_{\delta}^2 + \sigma_i^2}$$

16

12