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A Appendix: Theoretical Structure of SIR and Spatial-
SIR

In this appendix we construct the theoretical structure of SIR and Spatial-SIR as
Markov chains processes. We present the structure of these models in discrete time
first, for consistency with the simulation analysis in the text.

A.1 SIR

The society is populated by N individuals. Agents are ex-ante identical in terms
of demographic characteristics. Let S denote the individual state-space. In the
SIR model, the state-space is S = {S, I,R}, indicating Susceptibles, Infected, and
Recovered. Let hit ∈ S denote the state of agent i at time t. Let ht = 1

N [St, It, Rt] ∈
∆S denote the distribution of the population across the state-space.1 The SIR model
is represented by a Markov Chain:

prob(hit+1 = h′ | hit = h) = Th h′(ht)

where Th h′(ht) is the generic element of a S×S double-stochastic (transition) matrix
T (ht). The dependence of the transition matrix on ht, the distribution of the pop-
ulation across the state-space (the aggregate state of the economy), is a mean-field
property justified in this class of models by random matching in the population.

§Please check our websites for an updated version of this paper. Bisin: New York Uni-
versity, wp.nyu.edu/albertobisin/, alberto.bisin@nyu.edu. Moro: Vanderbilt University,
andreamoro.net, andrea@andreamoro.net.

1Abusing notation, we let we let the capital letters indicating a state also denote the fraction of
the population in that state; and we let S denote both the set and its numerability.
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More specifically, the matrix Th h′(ht) is determined by the following transitions:
S −→ I. A Susceptible agent becomes infected upon contact with an Infected,

with probability πI.
A −→ R. An agent Infected at t, at any future period, can Recover with proba-

bility ρ.
R Recovered is absorbing state of the dynamic process (agents entering this state

never leave). This assumes Recoved agents are immune to infection.

The resulting dynamical system for the distribution of the population across the
state-space, ht, is the following,

ht+1 = T (ht)ht.

The dynamical system can be solved for in closed form, see e.g., Moll (2020),
Neumeyer (2020).

A.2 Spatial-SIR

We now add a spatial dimension to the SIR model. We also expand the state
space to better caputure several relevant aspects of the SARS-CoV-2 infection.
Specifically, we split the I state into Asymptomatics and sYmptomatics, A and
Y . We also add explicitly the state D, for Dead. Hence, S = {S,A, Y,R,D}.
We maintain the notation hit ∈ S to denote the state of agent i at time t; and
ht = 1

N [St, At, Yt, Rt, Dt] ∈ ∆S to denote the distribution the N agents in the pop-
ulation across the state-space.

Agents are located in space, e.g., a lattice, which we call "the City." Agents are
ex-ante identical in terms of demographic characteristics and symmetric in terms of
location in space. A (Markov) transition process between states governs the dynam-
ics of the system from the initial condition, at day t = 0. The spatial dimension
maps the stochastic process into a local interaction model, a model in which agents’
contacts are not the results of random matching but rather of local matching, with
agents close in space (geographical distance as a metaphor for social distance). Let
Ht denote the configuration of agent at time t, a vector

[
h1
t , h

2
t , . . . , h

I
t

]
; the set of

all configuration is denoted H. The local interaction model is characterized by

prob(hit+1 = h′ | hit = h) = Th h′(Ht).

More specifically, the matrix Th h′(Ht) is determined by the following transitions:
S −→A. Susceptible agents become infected upon contact with an Asymptomatic,

with probability π.2 A contact is defined to occur when agents are at a geographical
2Susceptible agents are not infected upon contact with a sYmptomatic agent; this is to capture

the fact that sYmptomatic agents are either isolated at home or in the hospital. They movements
in the City are vacuous.
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distance in space ≤ p.
A −→ Y, R. An Asymptomatic agent infected at t, at any future period, can

become sYmptomatic with probability ν, or can Recover with probability ρ.
Y −→ R, D. An agent who has become sYmptomatic at t, at any future period,

can Recover with probability ρ, or can Die with probability δ.
D, R. Dead and Recovered are absorbing states of the dynamic process. As we

noted, this assumes Recoved agents are immune to infection.

Abusing notation, a transition matrix T (Ht) in the space of possible configura-
tions H can be constructed from Th h′(Ht).3 The resulting dynamical system for
configurations Ht is

Ht+1 = T (Ht)Ht.

But Spatial-SIR accounts for agents possibly coming into contact after moving
randomly in space.4 Let the operator Pt, mappingHt ∈ H into Pt◦Ht ∈ H, represent
a configuration after a random permutation of the position of the agents, indexed by
i. Before transitioning from the state at t to the state at t+ 1 the agents’ locations
are permutated randomly. The local interaction model is characterized by

prob(hit+1 = h′ | hit = h) = Th h′(Pt ◦Ht).

The resulting dynamical system for configurations Ht is:5

Pt ◦Ht+1 = T (Pt ◦Ht)Pt ◦Ht. (1)

The dynamical system is difficult to formally characterize, besides (possibly) an
ergodicity result, with respect to initial conditions specifying, at day t = 0, a random
allocation of agents on evenly spaced locations in the City, all of them Susceptible,
excepts for A0 > 0 agents who are exogenously infected Asymptomatics. All our
simulations, for all parameter values and initial conditions, converge to a unique
ergodic distribution over the state space ht = 1

N [St, At, Yt, Rt, Dt] ∈ ∆S .

3This is an ugly looking operation, but formally straighforward, as purely arithemetical.
4This is different from most mathematical literature on local interactions; see e.g., Kindermann

and Snell (1980) and Liggett (2012).
5This representation is complicated in that the state space H is very large, and the permutation

does not help. A simpler representation of prob(hi
t+1 = h′ | hi

t = h) can be obtained as follows. Let
It map locations l ∈ L into agents i ∈ I. Assume at time t = 0 the map I0 is an identity map so
that the index i coincides with l. (This assumes, just for simplicity, that the numerability of agents
is the same as that of locations.) Let It+1 = P ◦ It, t ≥ 0. Fix an agent i and let l be the unique
solution to It(l) = i. (As we constructed it, It+1 is a byjection.) Let NBHDt(i) = {i ∈ I | i =
It(l

′), l − d ≤ l′ ≤ l + d}. Then

prob(hi
t+1 = h′ | hi

t = h) = Th h′([hi′
t ]i′∈NBHD(i)).
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A.3 SIR and Spatial-SIR in Continuous Time and Space

The SIR in continuous time model is the workhorse of the epidemiology literature,
from Kermack and McKendrick (1927); see Hethcote (2000) for a thorough math-
ematical presentation. It is representated by the following system of differential
equations:

dI

dt
= βS

I

N
− ρI

dR

dt
= ρI

N = S + I +R

The SIR has been extended to a continuous space s on some bounded domain Ω;
see e.g., Chinviriyasit and Chinviriyasit (2010) and Wu et al. (2017). The Spatial-SIR
is then represented by the following system of reaction-diffusion equations:

dI

dt
− α∆I = βS

I

N
− ρI

dR

dt
α∆I = ρI

N =

∫
Ω

(S + I +R)ds, for all t

where ∆ is the Laplace operator, defined as the divergence ∇ of the gradient ∇, so
that e.g., ∆I = ∇2I; and the boundary conditions, e.g.,

∂ηS = ∂ηI = ∂ηR = 0

where η is the outward unit normal vector on the boundary of Ω, ∂Ω.
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B Appendix: Additional Figures

B.1 Baseline model calibration

Figure B.1: Growth rate of infections
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B.2 How the model scales

In Figure B.2 we compare the progression of the contagion at days 10, 20, 30, 40,
50, and 70, between the baseline city and a city with four times the population
and the area (so that density is constant), and with four initial clusters of the same
size as in the baseline located in symmetric locations. Each panel reports on the
right the geographical location of infections in the bigger city, on the bottom left the
geographical location of infections in the baseline (smaller) city, and on the top left
the contagion rates.

The progression of the infection is almost entirely symmetric, barring minor
effects due to the randomness of people’s locations and movement. The top-right
chart in each panel shows that both the fraction of active and total cases is nearly
identical between the two Cities.
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Figure B.2: Rescaling a City

The figure illustrates the progression of infections in two cities. From the top-left panel proceeding right
and down: day 10, 20, 30, 40, 50, and 70. The small city (bottom right square in each panel) is our
baseline city. The large city (large square) is a city of four times the area, four times the population, and
4 times the initial cluster of infections, placed in simmetric positions geographically. The top-left chart in
each punel illustrates the fraction of active cases and total cases at day t. Yellow dots are the the active
cases, green dots are the recovered cases (susceptibles are omitted).

B.3 Lockdown policies

The role of local herd immunity appears very evident when comparing the effects
of a lockdown policy (the typical Non-Pharmaceutical Intervention adopted in the
SARS-CoC-2 epidemic) in SIR and in Spatial-SIR. Figure B.3 reports the dynamics
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of active cases under lockdowns restricting the movements of 30% and 50% of the
population. The lockdowns are imposed when the fraction of active cases reach 10%
of the population and it is lifted when the fraction of active cases reaches 5%. The
left panel reports results from Spatial-SIR, the right panel from SIR.

Figure B.3: Comparison of models with 30% and 50% lockdown policies

Left Panel: Spatial-SIR model, Right panel: SIR model. The lockdown is imposed when the
fraction of active cases reaches 10% of the population, and lifted when the fraction returns to 5%

Lockdowns have a smooth effect on the dynamics of active cases in SIR (right
panel), reducing the peak from 70% to 50% (for the 50% lockdown). Lifting the
lockdown has minimal effects in SIR because, when active cases reach 5%, herd im-
munity is relatively far advanced. In Spatial-SIR, on the other hand, the lockdown
sets local herd immunity immediately in action (especially so the 50% lockdown),
dramatically reducing new cases (left panel). Cases however start surging as soon
ad the lockdown is lifted, giving rise to the various waves/cycles (especially so for
the 50% lockdown represented by the orange line).

In Figures B.4 (resp. B.5) we report, for both SIR and Spatial-SIR, additional
outcomes of the epidemic dynamics under these a policies.
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Figure B.4: Comparison of models with 30% lockdown

Figure B.5: Comparison of models with 50% lockdown

B.4 Number of clusters

In Figure B.6 we report the results of simulations varying the number of initial
clusters from 0 to 20, in our otherwise baseline city, while keeping the number of
initially infected agents constant. We observe that, with our calibrated parameters,
the effect of increasing the number of initial clusters converges quite fast: when
there are five or more initial clusters, increasing the number of initial clusters while
keeping the number of initially infected the same, has no effect on the dynamics of
the epidemics.
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Figure B.6: The effect of the number of clusters
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B.5 City size

In Figure B.7 we report the results of simulations varying the size of the City, in our
otherwise baseline City, while keeping the size of the initial outbreak of the infection
and City density constant. We observe that, with our calibrated parameters, the
effect of increasing City size: the peak of active cases declines with size in a convex
manner (less so the larger the city); the number of days it takes to reach the peak and
the number of days to the stationary state (the end of the epidemic) both increases
with size and do so with a slight concavity (less so the larger the city).
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Figure B.7: City size comparisons
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B.6 City density

In Figure B.8 we report the results of simulations varying City density, in our other-
wise baseline City. We observe that, with our calibrated parameters: i) (R∗+D∗)/N
is increasing and concave in density; and the peak of (A + Y )/N is also increasing
and concave in density. In the right panel of Figure B.8 we see that the days it takes
to reach the peak and the stationary state are decreasing and convex in density.
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Figure B.8: The effect of varying city density with constant population
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