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Abstract

We estimate the effects of obesity on wages accounting for the endogenous

selection of workers into jobs requiring different levels of personal interactions

in the workplace. Using data from the National Longitudinal Survey of Youth

1979 combined with detailed information about occupation characteristics from

O*Net, we confirm the results from the literature finding a wage penalty for

obese white women. This penalty is higher in jobs that require a high level of

personal interactions. Accounting for job selection does not significantly change

the estimated wage penalty.
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1 Introduction

This paper investigates how the relationship between obesity and wages is affected

by the level of personal interactions required in the workplace while accounting for

selection into these types of jobs. A vast literature studies how obesity affects labor

market outcomes.1 In a seminal paper, Cawley (2004) finds a negative effect of

obesity on wages for white women.2 A possible explanation of this effect is that

obesity results in social stigma, affecting men and women differently (the so-called

“beauty premium”).3 To the extent that body weight affects a person’s appearance,

it may also affect other people’s perception of his or her labor-market relevant traits.4

Other papers have documented how the wage penalty varies according to the degree

of personal interactions required in the workplace, however these papers have not

accounted for the possibility of how weight affects selection into these types of jobs.

If the effect of stigma on wages is more prominent for workers employed in jobs

requiring frequent personal interactions, then obese workers may be more likely to

self-select into jobs requiring fewer interactions. We study how this self-selection

affects the observed job-specific relationship between obesity and wages.

There exist at least two channels that may generate a weight penalty in jobs

requiring personal interactions. One possibility is that overweight individuals, being
1See Averett and Korenman (1996), Cawley (2004), Pagan and Davila (1997), Register and

Williams (1990) and references therein.
2Using more recent data, DePasquale and Macis (2016) find that this penalty has declined after

year 2000.
3A growing literature (see Hamermesh and Biddle (1994)) documents the relationship between

wages and physical appearance, which is at the root of the “beauty premium” conjecture. Bhat-
tacharya and Bundorf (2009) offer an alternative explanation for the obesity wage penalty. Given
that obese workers have higher expected medical expenditures, they also have higher health insur-
ance costs. If these workers obtain health insurance from their employer, their employer will pass
some of these costs to the employee in the form of lower wages. They find supporting evidence for
this type of mechanism

4See Baum and Chou (2011) for an analysis of the socioeconomic causes of obesity. Another
explanation from the sociological literature is that obesity has a more adverse impact on the self-
esteem of white female than on that of other groups, but Averett and Korenman (1996) do not find
empirical support for such conjecture.
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perceived as less attractive in the workplace, are discriminated against by co-workers,

customers, or employers who have a taste against interacting with individuals with

above normal weight (as in Becker (1957)’s theory of discrimination). In this case,

jobs that require more interactions display a stronger relationship between weight

and labor market outcomes. A second theory is that co-workers, customers, or

employers statistically discriminate against overweight individuals.5 According to

this theory employers hold a (possibly biased) belief that overweight workers are on

average less productive, for example because they are less capable of performing the

productive tasks requiring interactions. If productivity is imperfectly observed, body

weight is used by employers as a proxy in order to improve the workers’ job allocation.

Therefore, individuals carrying a different body weight, but otherwise identical, are

treated differently. This (statistical) discrimination will be larger in jobs requiring

personal interactions. Both channels carry the same implication: workers in jobs

that require more interactions with customers or co-workers will be more strongly

affected by their appearance.6

When the effects of obesity on wages are economically relevant, workers may, de-

pending on their body mass, self-select into jobs requiring different levels of personal

interactions. Our contribution is to account for the endogenous selection of workers

into job types by adopting a job selection model to correct for the potential bias

occurring when selection is ignored.7

To this end, we merge two sources of data. The first one is the National Lon-

gitudinal Survey of the Youth 1979, a nationally representative sample of men and
5The theory was originally proposed by Phelps (1972); see Fang and Moro (2011) for a survey.
6With experimental data, Rooth (2009) shows that employers discriminate, at the point of hiring,

against obese job applicants, but without distinguishing between applications to jobs that require
personal interactions and those that do not.

7Previous research has noted that people with different body mass choose different jobs. Han
et al. (2011) and Morris (2006) examined the relationship between individuals’ weight and their
employment decisions over the life cycle, but do not account explicitly for the endogenous selection
of workers with different obesity into different types of jobs.
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women aged between 14 and 22 when first interviewed in 1979. This dataset con-

tains detailed information about the respondents, including their weight, height,

employment status, occupation and wages. The second source of data is the O*Net

database, which classifies occupations according to hundreds of standardized descrip-

tors illustrating each occupations’ characteristics and the workers’ required skills.8

From this information we use factor analysis to construct a variable measuring the

level of personal interactions required by each occupation. We classify occupations

in one of two types, depending on whether the job’s level of personal interactions

value is above or below the median.

The literature on the effects of obesity on wages typically regresses wages on

obesity status, using different statistical methods to identify the causal effect of

weight (usually fixed effects or instrumental variables techniques), to account for the

possibility of reverse causality (i.e poorer individuals have less time and monetary

resources to eat healthy food, exercise, etc.). We complement this approach by

adopting a Roy model of self-selection.9 In this framework, workers of different body

mass may have a comparative advantage in performing different types of jobs. We

assume each person chooses between two types of jobs, requiring a high or low level

of personal interactions. Each job-type requires specific skills, which are distributed

differently among workers of different body mass. Workers select the job that gives

them the highest expected earnings. In the standard OLS regression of wages on

Body Mass Index (BMI), ignoring this selection biases the coefficient on BMI, even

after controlling for job type. For example, obese individuals may disproportionally
8O*Net provides for each occupation values to descriptors such as “Contact with Others” (How

much does this job require the worker to be in contact with others, face-to-face, by telephone, or
otherwise in order to perform it? ), Face-to-Face Discussions (How often do you have to have face-to-
face discussions with individuals or teams in this job? ), or Work With Work Group or Team (How
important is it to work with others in a group or team in this job? ). The full set of descriptors used
in our analysis is listed in Appendix B.

9See Roy (1951) and Heckman (1990). Seminal papers in this empirical literature are Willis and
Rosen (1979), Heckman and Sedlacek (1985), and Borjas (1987).
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find it more advantageous to seek employment in jobs requiring fewer interactions,

where obesity has a smaller impact. Because we do not observe the wages that obese

workers would obtain in jobs requiring interpersonal interactions, a standard OLS

regression of wages on BMI would return a biased coefficient.

The standard specification used in the literature uses a wage equation with indi-

vidual fixed effects to account for reverse-causality between obesity and wages, that

is, the possibility that low-wages cause obesity (perhaps because poorer families have

easier access to fattening food), and the possibility that unobserved covariates affect

both obesity and wages.10 To correct for the selection bias, we model job selection

with an equation capturing the discrete choice between two job-types. Estimates

from this equation provide information about the selection bias in the wage equa-

tion. To unbiasedly estimate the wage equation including fixed effects in both the

selection and treatment equations, we adopt in our preferred specification the two-

step semi-parametric estimation procedure developed in Kyriazidou (1997) that does

not rely on specifying a parametric structure of the residuals. This approach allows

us to control for time-invariant unobservables, such as personality traits, that may

affect both selection into job type and be correlated with BMI.11 This represents a

substantial improvement over previous work that has not included fixed effects when

studying occupational choice as a function of weight status. In fact, we are able to

show that without including for the fixed effects in the selection equation could lead

to a different conclusion from the one we find in this paper.12 As a robustness check

we verify our results by adopting the two-step parametric method introduced by

Willis and Rosen (1979) that does not include fixed effects in the selection equation,
10This approach is adopted in Cawley (2004).
11For example, extroverted individuals may be more likely to work in jobs with high social

interactions. Personality traits may also be correlated with obesity (Elfhag and Morey (2008);
Sutin et al. (2011))

12See e.g. Shinall (2014), discussed below.
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and a standard fixed effects model that ignores the endogenous job selections.

To identify the selection bias correction, we use the respondent’s closest siblings’

job type as an exclusion restriction. We argue that this variable affects the relation-

ship between obesity and wages only through job choice. Individuals may find it

easier, regardless of their obesity, to find jobs requiring skills that are similar to the

jobs of their family members, either because of direct referrals, or because family

members correlate on other skills required in the workplace.13

Our findings confirm, using up-to-date information and modeling for selection,

the literature’s result that the negative relationship between obesity and wages is

significant only in some demographic groups, notably white women. We find that

the negative relationship between obesity and wages is mostly coming from the

subset of workers in jobs needing a high level of personal interactions. In such

jobs, the relationship is stronger than average. In jobs that require a lower level of

personal interactions, the relationship between BMI and wages is smaller and not

statistically significant. This effects are consistent even when accounting for selection

into different types of jobs. This reinforces findings in this literature that have no

accounted for selection.

Our analysis is most related to the research in Cawley (2004), Han et al. (2009)

and Shinall (2014). Cawley (2004) focuses on the effect of obesity on wages. To ac-

count for sources of bias, such as omitted variables and reverse causality, he follows

different strategies: controlling for lagged values of BMI, using siblings’ weight as an

instrument for the respondent’s weight, and, in his preferred specification, includ-

ing individual fixed effects. However, he does not control for job type. Han et al.

(2009) introduce the use of job characteristics. They use data from the Dictionary
13We note that the two-step selection models do not need an exclusion restriction, they can be

identified out of the functional form. However, it has been documented that identification from the
functional form may be sensitive to specification Dow and Norton (2003); Puhani (2000)
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of Occupational Titles (DOT - a precursor of O*Net, the database we use) to ob-

tain information about the jobs the individuals are performing. They find that the

association with BMI and wages is stronger for jobs that require more interpersonal

skills, but do not account for endogenous job selection.14 Finally, Shinall (2014) uses

job characteristics to compare the effects of obesity on wages for jobs that require

physical skills versus jobs that require social skills. However, in that paper the data

does not offer the possibility of controlling for individual fixed effects, which was the

preferred identification strategy in Cawley (2004), nor endogenous job selection is

accounted for.

Our paper builds on these three papers and extends their analysis by explicitly

accounting for the endogenous selection of workers into jobs to verify if job sorting

affects the magnitude of the effects of obesity on wages. To account for such selection,

we adopt two different methodological approaches and base our conclusions on the

comparison of these results with the results from the literature that does not account

for job selection.

In another related paper, Harris (2017) studies the relationship between body

mass and occupational choice. He uses a dynamic model along the lines of Keane

and Wolpin (1997) and he estimates it using maximum likelihood. He also uses ran-

dom effects in order to account for the within-individual serial correlation in wages.

We consider our work complementary to Harris (2017): even though our model is

not dynamic, by using a specification with fixed effects, we are able to account

for time-invariant factors affecting both wages and (for our preferred specification)

occupational choice.
14The importance of job choice is also suggested by Lundborg et al. (2014), where it is found

that teenage overweight status, which affects skill acquisition, affects adult labor market outcomes.
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2 Data

The National Longitudinal Survey of the Youth 1979 is a nationally representative

sample of the American youth. Respondents were sampled first in 1979 when they

were between 14 and 22 years of age, every year until 1994, and every two years since.

We use 15 years of data ranging from 1982 thru 2006.15 This is a widely used survey

in research on employment and obesity, allowing for comparability of our results

with other studies. The survey contains detailed questions about employment and

tenure, household environment and structure, and personal health information like

height and weight. For the empirical analysis we use information on gender, race,

education status, marital status, number of children in the household, Armed Forces

Qualification Test (AFQT), age of youngest child, highest grade achieved by mother

and father, work tenure, years of experience, and region dummies. We also follow the

literature and generate dummies representing missing values for each of the variables

to account for different types of misreporting. The estimation sample includes 41,589

person-years (19,175 person-years for women and 22,414 person-years for men) after

excluding women who were pregnant at the time of interview, individuals under the

age of 18, and individuals who did not have full employment or weight information.

About 91 percent of our sample is employed, with on average 141 weeks of tenure at

their current job.

In order to construct the main dependent outcome we obtain information on

the hourly wage of each individual and then, as in Cawley (2004), we top-code the

hourly wage at $500. The hourly wage variable is a computed hourly wage from

NLSY, which bases the hourly wage on questions about last-week employment. In

order to compute the hourly wage, the NLSY uses information on earnings, time unit
15We cannot use all of the survey years because the survey does not include body weight infor-

mation in these years. The years that we end up using for our sample are: 1982, 1985, 1986, 1988,
1989, 1990, 1992, 1993, 1994, 1996, 1998, 2000, 2002, 2004 and 2006.
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of compensation (hourly, weekly), and usual hours worked. We normalize wages to

2010, using the Consumer Price Index for Urban Consumers. Our left hand side

variable is the log of real hourly wages. Our estimation sample shows that the

average wage for men is $14.57 while the average wage for women is $11.58. When

focusing on the difference between normal weight category and obese category, we

estimate a wage differential of -$0.77 for women and a $3.01 for men, i.e. obese men

earn - on average - higher hourly wages than normal weight men.

The Body Mass Index (BMI) is computed as the ratio of a person’s weight in

Kilograms and the square of height in meters. As standard practice in the literature,

we look at the effect on wages of categorical values of BMI: individuals are defined

underweight if their BMI is below 18.5, overweight if their BMI is between 25 and 30,

and obese if their BMI is greater than 30. In order to calculate the Body Mass Index

(BMI), we pool the responses for all years that recorded self-reported weight. Height

was assumed to be equal to the height recorded in 1985, when respondents were

between 20 and 27 years of age. We adopt the standard practice in the literature to

correct for self-reporting error of weight and height by using the procedure proposed

by Burkhauser and Cawley (2008). This procedure exploits information on the

relationship between true and reported height and weight collected in the National

Health and Nutrition Survey. They regress accurate measures of height and weight

on self-reported measures of height and weight, age, and age square separately by

race and sex. We use the coefficients from these regressions with our sample to

produce a predicted “Y” which is the corrected self-reported weight or height.16 In

our estimation sample the average BMI is around 25.69 for women and 26.68 for

males. Appendix Table A1 provides more information on the summary statistics of

our sample.
16See also Lee and Sepanski (1995) and Bound et al. (2001) for a technical discussion of this

method.

9



Figure 1: Sample of Question about Importance and Level in O*Net

We identified the respondents’ job in every year in which they are employed, as

well as the associated hours worked and the hourly wage received at each job. If

individuals are working multiple jobs, they report one of the jobs as their main job

and we use that information as their main source of employment. The NLSY offers

census occupation codes for all jobs. We use these codes to merge the NLSY data

with data from the 2010 revision of the Occupational Information Network (O*Net)

database, which contains detailed information about job characteristics.

For each occupation, O*Net offers a description of required tasks, tools and tech-

nologies, knowledge, skills, abilities, work activities, work context and education. For

each piece of information, the database reports two numerical values, “importance”

and “level”. The “importance” value is a number ranging from 1 to 5 representing

how often the skill is used; the “level” is a number ranging from 1 to 7 representing

the expertise in skill needed to perform the job. For example, the skill “writing”
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Figure 2: Wages and BMI for different groups and job types
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may be equally important for secretaries and journalists, but a professional writer

may need a higher level of writing skills. The database contains a total of 277 job

descriptors. Figure 1 reports, as an example, one of the questions which is relevant

to infer the importance and level of personal interactions required to perform the

respondent’s job.

We use information from the categories “skills” and “abilities” in O*Net to cal-

culate how important personal interactions are to perform any given job. We chose

17 work activities and job skills that, to our judgement, are most important for dis-

cerning the importance of personal interactions. These questions assess how relevant

such interactions are to perform a job, to communicate with others (supervisors, co-

workers, or customers), to resolve conflicts or coordinate other individuals, to speak,

negotiate, coordinate others, etc. The full list of job descriptors we selected can be

found in Appendix B.

We used the “level” values for each task and skill; to reduce the dimensionality

of the information we used factor analysis to extract a single variable measuring

the degree of personal interactions required by each job.17 We use the median of
17We replicated the analysis using the “importance” indicators, which lead to similar results.

In our main specifications we use the “level” measure because it displays more variation than the
“importance” measure.
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this standardized score for the entire sample as a threshold to categorize jobs in

two categories: those requiring high and low levels of personal interaction. In our

estimation sample we find that 58% of women are occupied in jobs requiring a high

level of personal interactions, whereas only 44% of males are employed in these

job. In Figure 2, we plot the predicted logarithm wage across the different levels of

BMI for jobs requiring a high level of interactions versus jobs requiring low levels of

personal interactions for two groups, white women and white males.18

These figures illustrate several facts. First, jobs requiring interactions usually

pay higher wages than other jobs. Second, the relationship between BMI, wages,

and job-type is different between males and women. The relationship between wages

and BMI is close to linear for women, and decreasing in BMI; the same relationship

for males is non-monotonic. Finally, the wage-gap between jobs with high and low

levels of personal interactions for white women is decreasing in BMI, suggesting that

there is a higher penalty of BMI on wages for women in jobs requiring interactions,

presumably because weight and appearance is more important in such jobs. The

same penalty is not as evident for males’ wages as for women’ wages.

Figure 3 displays the distribution of BMI by type of job and gender. The BMI

distribution appears to display a smaller variance in jobs requiring more interactions.

Harris (2017) also documents how the share of obese workers in a given occupation

varies across age categories. These facts suggests the possibility of job selection

which we will explore in the empirical analysis.

Our empirical specification will use information about the individual’s sibling,

hence the sample will be restricted to individuals who have siblings (and that have

non-missing information on the sibling). This sample restriction means that we

are using around 32 percent of the individuals in the full sample. Table A4 in
18The other race-gender groups can be found in Appendix C
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Figure 3:
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the Appendix A compares our sample to the excluded sample in key observable

characteristics showing that the sample we use in our estimation is very similar to

the excluded sample.19 While we do not see a strong evidence of sample selection, it

is possible that our results are not robust to extending the analysis to a larger sample,

for example because families with one child, which belong to wealthier backgrounds,

may have different job opportunities.

3 Empirical framework

We now turn to describing our empirical strategy to account for the selection into the

different types of jobs. We assume that individuals can be employed in two types of

jobs j, requiring (j = 1) or not requiring (j = 2) a high level of personal interactions.

Let witj be the log wage of individual i at time t employed in job j ∈ {1, 2}, which

we assume to depend on a set of covariates Xit, including her or his obesity at time

t, BMIit, and, depending on the adopted specification, individual and time effects to
19There are, however, differences in average tenure and experience between the two samples
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account for the possibility of reverse causality from wages to BMI:

witj = αjXit + ζi + εjit (1)

Let Jit be a latent variable determining the job-type choice of the individual and

let Zit denote a set of observed variables that influence the job choice of individual

i at time t with some elements of Zit not affecting wages directly. We assume the

following job selection model:

Jit = βZit + ηi − ε3it (2)

with job choice jit = 1 if Jit ≥ 0, and jit = 2 otherwise. Hence,

Pr(jit = 1) = Pr(ε3it ≤ βZit + ηi) (3)

Because individuals selects into different jobs according to their possibly time-

varying characteristics, wages are not observed from a random sample of the popu-

lation and an OLS regression of the wage equation with fixed effects delivers biased

coefficients because:

E(wit1|Jit = 1) = α1Xit + ζi + E(ε1it|J = 1) = α1Xit + ζi + E(ε1it|ε3it ≤ βZit + ηi)

E(wit2|Jit = 2) = α2Xit + ζi + E(ε2it|Jit = 2) = α2Xit + ζi + E(ε2it|ε3it > βZit + ηi)

Procedures to account for the selection bias in linear models have been developed

since the seminal paper by Heckman (1979).

It is worth elaborating on the possible source of this bias. The wage equation

(1) includes individual fixed effects. If the factors that affect the probability of an

individual selecting a job with high personal interactions do not change over time
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(i.e. the Zit variables in (2)), then the expected value of such probability will not

change over time and will be absorbed by the individual fixed effects. On the other

hand, if there is within-individual variation over time in the factors affecting the

selection equation, then the OLS regression may be biased, even if it includes fixed

effects. This will occur if the error term ε3it in the job selection equation (2) is

correlated with the error term εjit in the wage equation (1). This type of concerns

motivates our use of a selection model.

Fixed effects may also enter the selection equation. For example, unobservable

personality traits likely affect the probability of working in a job with high personal

interactions. Moreover, such traits are also likely correlated with BMI.20 In order to

alleviate these problems, in our preferred specification we include fixed effects not

only in the wage equation, but also in the selection equation. The standard procedure

in estimating fixed effects models with panel data is to compute time-differences of

the equation of interest, which eliminates the individual fixed effects ζi. However, in

the presence of selection with fixed effects, sample selectivity creates nonlinearities

in the wage equation that cannot be differenced out. We therefore adopt the method

proposed in Kyriazidou (1997) and label this as specification K in our results.

Kyriazidou (1997)’s procedure follows a two-step approach in the spirit of Heck-

man (1979), in which the unknown coefficients of the selection equation (2) consis-

tently estimated in the first step are used to estimate the equation of interest (1) in

the second step. This estimator matches observations within individuals that have

the same selection effect in two time periods. It then differences out both the indi-

vidual heterogeneity term, and the selection term. Identification of the fixed effects

specification of the selection equation requires individuals transitioning between job
20The psychology literature has found a correlation between personality traits, such as extraver-

sion and impulsiveness, and obesity (Elfhag and Morey (2008); Sutin et al. (2011)). In the economic
literature, Courtemanche et al. (2014) find that greater impatience increases BMI.
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t
t+ 1 Low High

Low 0.78 0.22
High 0.17 0.83

Table 1: Transition probabilities from jobs with Low/High levels of social interactions
at time t to jobs with Low/High levels of social interactions at time t+ 1.

types. Table 1 displays the transition probabilities across jobs with different levels

of social interactions, showing that job-type transitions are quite frequent.

This approach makes no parametric assumptions about the correlation structure

about the unobservables in the model. This is an advantage over previous traditional

selection models such as Heckman (1979) that impose a bivariate normal distribution

on the joint probability of unobservables.21

The wage equation is estimated with the usual procedure of taking time dif-

ferences of the observed variables as in standard linear panel data models, which

eliminates the fixed effects ζi. To account for sample selectivity, each observation is

assigned a weight computed in the first step. The procedure assumes that, for an

individual choosing job j in two consecutive periods, the selection effect remains the

same if the variables that determine the job choice do not change over time, in which

case the selection effect is completely eliminated by the time differencing in the sec-

ond stage. A kernel weight is therefore computed as a function of the magnitude of

the estimated differences |β̂Zi,t+1 − β̂Zi,t| so that a larger difference corresponds to

a smaller weight, where β̂ is consistently estimated using a logistic model. In other

words, for a given individual, if we observe a switch to a different job type and no

change in BMI, then this observation will not receive too much weight in the wage

equation, as opposed to individuals who experience changes in both jobs and BMI.

In this approach identification of model parameters is guaranteed by nonlineari-
21For a discussion of selection methods and their differences see Dustmann and Rochina-

Barrachina (2007)
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ties in the first stage. However, non-parametric identification is usually preferable if

a variable is available that affects the selection equation without affecting the wage

equation directly. To this end, we include in Zit the closest sibling’s job type.22 This

choice is supported by a large body of evidence documenting that jobs are often

found through social networks (family, friends etc.), via, for example, job referrals

(Topa (2011)). We hypothesize that the closest sibling’s job type provides infor-

mation regarding the type of jobs a worker may be referred to. As to the validity

of our instrument, we rely on results from the literature that find, at least for the

U.S., more mixed effects of job referrals on wages, with effects sometimes being pos-

itive and other times, especially for the U.S., close to zero (Topa (2011); Pellizzari

(2010); Loury (2006)). This exclusion restriction will improve identification of the

parameters of interest, the coefficients on BMI categories.23

As a robustness check we also estimate the model (1-2) using a traditional para-

metric approach without fixed effects in the selection equation. We assume joint nor-

mality of the error term vector [ε1, ε2, ε3], with zero means and variance-covariance

matrix Σ = [σij ] and adopt the two-step procedure by Willis and Rosen (1979) who

use the probit job selection model to compute the predicted values of the inverse

Mills ratios and, in a second stage, estimate the wage equations (1) by Ordinary

Least Squares, including among the regressors the inverse Mills ratios in order to

correct for selection bias.24 We label this specification WR in our results. Finally

we compare our results to the preferred specification in Cawley (2004), who includes
22In order to identify the “closest” sibling of each individual we create a measure of distance

between each individual and all of their siblings. This measure is the sum of the squared difference
between the siblings’ age, race and gender. The “closest” possible sibling is one that has the same
age, race and gender.

23The use of sibling’s information as a possible instrument is a common strategy in the literature:
for example, Cawley (2004), who does not control for selection, uses a sibling’s BMI as an instrument
for an individual’s BMI.

24We bootstrap with 400 replications the standard errors of the second stage, in order to account
for the fact that the inverse Mills ratios are estimated.
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High personal interactions Low personal interactions
N × T N ln(w) N × T N ln(w)

Whites
Women 7,082 1,213 2.73 4,223 1,120 2.36
Men 6,865 1,171 3.02 6,287 1,306 2.61

Blacks
Women 2,705 549 2.56 2,903 630 2.28
Men 1,880 473 2.81 4,549 767 2.46

Hispanics
Women 1,987 373 2.64 1,291 317 2.32
Men 1,808 352 2.91 2,486 445 2.58

Table 2: Sample sizes and mean log wages

fixed effects in the wage equation. We estimate this specification for both job types

and label its result OLS-FE.

4 Results

To allow for appropriate comparisons, we use the same sample in all specifications.

Sample size and average wages for all specifications are reported in Table 2, and

other descriptive statistics in Appendix A. The main results are reported in tables

3 (Whites), 4 (Blacks), and 5 (Hispanics). In each table, columns 1, 2, and 3 report

the results respectively for the specifications that include fixed effects in both the

selection and wage equation (K), fixed effects in only the wage equation (WR), and

the fixed effect specification that ignores job selection (OLS-FE), as described in the

previous section. The first two columns represent the specifications that account for

selection, and the difference between the first and second column portray the dif-

ference between including and excluding individual FE from the selection equation.

The tables report the effects of the categorical BMI levels (normal BMI is the omit-

ted category) on wages. In the wage and selection equations we also control include

for the regressors typically used in this literature: age, number of children, age of
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the youngest child, the respondent and the respondent parent’s highest completed

grade, job tenure, enrollment in school status, experience, marriage status, region

dummies, and a time trend. The full set of coefficient estimates, including results

from the first stage regressions for specifications (OLS-FE) and (WR) are reported

in the Online Appendix. Standard errors are clustered at the individual level. The

top panel of each table reports the estimates for women and the bottom panel for

men. In each panel we report the results for individuals in jobs that require high

and low levels of personal interactions. In parenthesis we report robust standard

errors clustered by individual to account for correlations in the error terms of each

individual over time.

Taking a bird-eye view by looking for traction on the coefficients of the cate-

gorical BMI variables across different groups and specifications, we note that above

normal BMI has consistent statistically and economically significant effects on white

women working in jobs requiring a high level of personal interactions. This group

suffers a wage penalty from being obese between 8 and 11 percent, depending on the

specification.25 The wage penalty associated from being simply overweight is smaller

in size, but not statistically significant at the 5% level. The effect of abnormal BMIs

on black and hispanic women in jobs with a high level of personal interactions is

in almost all specifications smaller in magnitude and noisier, and not statistically

significant.
25In the WR specification, the coefficient is statistically significant only at the 10% level, not the

5% level which is the only one reported in the table.
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Table 3: Effects of BMI on log wages for whites

Women (1) K (2) WR (3) OLS-FE

High personal interactions
Underweight -0.125 -0.098∗ -0.070

(0.110) (0.049) (0.039)
Overweight -0.044 -0.052 -0.050

(0.037) (0.028) (0.029)
Obese -0.108∗ -0.082 -0.103∗

(0.049) (0.049) (0.045)
Inverse Mills Ratio -0.438

(0.282)
Low personal interactions

Under weight -0.013 -0.103 -0.067
(0.044) (0.053) (0.046)

Overweight -0.017 0.009 0.012
(0.066) (0.028) (0.023)

Obese -0.046 0.009 -0.026
(0.079) (0.042) (0.039)

Inverse Mills Ratio -0.503∗

(0.191)

Men (1) K (2) WR (3) OLS-FE

High personal interactions
Underweight 0.539∗ 0.106 0.094

(0.137) (0.089) (0.079)
Overweight -0.057 0.032 0.037

(0.088) (0.027) (0.024)
Obese 0.347 0.041 0.047

(0.427) (0.044) (0.040)
Mills Ratio 0.215

(0.181)
Low personal interactions

Underweight -0.010 -0.093 -0.065
(0.088) (0.118) (0.103)

Overweight 0.026 0.063∗ 0.024
(0.077) (0.023) (0.024)

Obese -0.052 0.036 0.018
(0.096) (0.04) (0.030)

Mills Ratio -0.326
(0.168)

Robust standard errors in parenthesis. ∗Significant at 5% or less
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Table 4: Effects of BMI on log wages for blacks

Women (1) K (2) WR (3) OLS-FE

High personal interactions
Underweight -0.01 -0.108 -0.101

(0.104) (0.104) (0.092)
Overweight 0.036 0.007 0.047

(0.114) (0.066) (0.039)
Obese -0.097 0.019 0.042

(0.144) (0.068) (0.056)
Inverse Mills Ratio -0.429

(0.409)
Low personal interactions

Under weight -0.193∗ -0.101 -0.099
(0.067) (0.064) (0.061)

Overweight 0.128 0.052 0.061∗

(0.085) (0.038) (0.030)
Obese -0.018 0.088∗ 0.093∗

(0.088) (0.041) (0.041)
Inverse Mills Ratio -0.097

(0.248)

Men (1) K (2) WR (3) OLS-FE

High personal interactions
Underweight 0.016∗ 0.540 -0.308∗

(0.000) (0.302) (0.047)
Overweight 0.002 0.075 0.017

(0.066) (0.058) (0.038)
Obese 0.039 0.110 0.042

(0.064) (0.083) (0.060)
Mills Ratio 0.681

(0.413)
Low personal interactions

Underweight 0.278 0.056 -0.057
(0.174) (0.073) (0.067)

Overweight -0.055 0.024 0.024
(0.047) (0.030) (0.024)

Obese -0.065 0.058 0.059
(0.065) (0.045) (0.039)

Mills Ratio -0.010
(0.310)

Robust standard errors in parenthesis. ∗Significant at 5% or less
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Table 5: Effects of BMI on log wages for hispanics

Women (1) K (2) WR (3) OLS-FE

High personal interactions
Underweight -0.068 -0.288 -0.168∗

(0.061) (0.180) (0.082)
Overweight 0.042 0.066 0.005

(0.107) (0.072) (0.053)
Obese 0.038 0.052 -0.063

(0.130) (0.097) (0.066)
Inverse Mills Ratio -1.629∗

(0.549)
Low personal interactions

Under weight 0.15 -0.272 -0.183
(0.105) (0.149) (0.108)

Overweight 0.105 0.077 0.040
(0.057) (0.059) (0.039)

Obese 0.156 0.103 0.019
(0.083) (0.088) (0.058)

Inverse Mills Ratio -0.755
(0.517)

Men (1) K (2) WR (3) OLS-FE

High personal interactions
Underweight 0.42 0.749 0.744

(0.563) (0.466) (0.444)
Overweight -0.378∗ -0.000 0.000

(0.118) (0.058) (0.054)
Obese -0.337∗ 0.027 0.038

(0.140) (0.094) (0.082)
Mills Ratio 0.217

(0.400)
Low personal interactions

Underweight -0.174 -0.150 -0.147 ∗

(0.100) (0.082) (0.068)
Overweight -0.057 -0.028 -0.028

(0.040) (0.029) (0.027)
Obese -0.090 0.038 0.035

(0.057) (0.048) (0.045)
Mills Ratio -0.070

(0.328)
Robust standard errors in parenthesis. ∗Significant at 5% or less

22



The effects of abnormal BMI for women with jobs with low levels of personal

interactions are usually smaller in magnitude for all racial groups. In the rare cases

when they are statistically significant, the results are not robust to different specifi-

cations. For example, obese black women receive a wage premium of about 9 percent

in these jobs, significant at the 5 percent level according to specifications (WR) and

(OLS-FE). This result is reversed, but noisy, in our preferred specification (K). In

the Hispanic women sample, in our favorite specification (K), overweight women

earn higher wages, with a premium of respectively 11% and 16%, barely missing the

5% statistical significance threshold. Both the size of these effects and statistical

significance of the estimates are lower in the other specifications.

The effect of abnormal BMI on men is rarely significant, and not robust to

changing specifications. For example, we find a negative effect of abnormal BMI on

hispanic men’s wages, but only in our preferred specification. We note however that

our exclusion restriction variable is not significant in this specification’s first stage

(see the Online Appendix for details), therefore this result may be the outcome of

some of this noise and should be interpreted with caution.

5 Discussion

The replication of the results with the OLS-FE specification (but added years of data)

is consistent with the findings in Cawley (2004) and Han et al. (2009) (see Table 6

for a comparison of their main results with our selection specifications K and OLS-

FE).26 Both of these papers find significant negative effects of obesity on wages for

white women, and the magnitude of these estimates is within the confidence interval
26There are several differences across the different specifications: Cawley (2004) and Han et al.

(2009) do not include year 2006. Han et al. (2009) wage equations are conditioned on people who
are employed. Cawley (2004) and Han et al. (2009) use a blue collar dummy and several state and
local economic characteristics. Finally, our sample only includes individuals with siblings.
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Table 6: Comparison of our results with Cawley (2004) and Han et al. (2009)

Our results
Cawley Han et al. (K) (OLS-FE)
(2004) (2009) High Low High Low

White women -0.087* -0.075* -0.108* -0.046 -0.103* -0.026
(0.015) (0.021) (0.049) (0.079) (0.045) (0.039)

Black women 0.002 -0.049* -0.097 -0.018 0.042 0.093*
(0.017) (0.025) (0.144) (0.088) (0.056) (0.041)

Hispanic women -0.020 0.032 0.038 0.156 -0.063 0.019
(0.024) (0.035) (0.130) (0.083) (0.066) (0.058)

White men 0.013 -0.001 0.347 -0.052 0.047 0.018
(0.015) (0.017) (0.427) (0.096) (0.040) (0.030)

Black men 0.031 0.014 0.039 -0.065 0.042 0.059
(0.019) (0.027) (0.064) (0.065) (0.060) (0.039)

Hispanic men 0.023 0.008 -0.337 -0.090 0.038 0.035
(0.025) (0.032) (0.140) (0.057) (0.082) (0.045)

*Significant at 5% or less. Coefficients on the category for “Obese” in each paper. Robust standard
errors are in parentheses.

of our unadjusted estimates. Similarly, these papers do not find strong evidence

for the effects of obesity in males or black and hispanic minorities. This reinforces

the evidence for an obesity wage penalty occurring for white women, but not other

race-gender groups even when adding more years to the analysis.

The second finding is that most of the negative effect of obesity for white women

is due to women working in jobs requiring a high level of personal interactions, con-

firming Han et al. (2011)’s results. These patterns are consistent with the evidence

displayed in Figure 2 and suggest that white women’s wage penalty for obesity may

be driven driven, in part, by social stigma, consistently with the hypothesis that
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appearance matters more in these types of jobs.

More importantly, we do not find evidence of drastic changes in these patterns

when accounting for selection. The estimated coefficients with and without individ-

ual fixed-effects in the selection equation are only slightly different relative to the

OLS-FE results. These results help validate previous findings on the estimation of

BMI on wages because most of those studies do not correct for selection into these

types of job. Nevertheless, the precision of the results change if individual fixed

effects are not included in the selection equation, hence we think it is non-trivial to

raise the relevance of including individual fixed-effects in the selection equation.

This result could have some implications. In other settings, it has been shown

that selection into jobs may have an important role, but in this case it does not seem

to have a relevant impact, given our results. This could be because the other ob-

servable characteristics and the individual fixed-effects are already capturing enough

of the time-invariant heterogeneity in the choice of jobs. An alternative hypothesis

is that there isn’t much selection occurring in the first place, and people’s choice of

job-type may depend on a set of other characteristics such that weight becomes less

trivial. Evidence from the first stage (the BMI coefficients) suggest that there is a

role of weight explaining job choices, which weakens support to this hypothesis.

It is also important to note some of the limitations of our methodology. First,

even though we are accounting for selection, there could be some unobservable time-

varying components across individuals that would be biasing the effects of obesity

on wages. For example, if higher weight is correlated with lower health and in turn

health affects productivity, our approach, as most others in the literature, would

confound the effect of weight with the one of health.27 Second, our exclusion re-

striction may fail: given that, like Cawley (2004), we have a single instrument, we
27Unfortunately, the NLSY does not collect data on health of individuals in all waves. Currie

and Madrian (1999)discuss the evidence of the effect of health on wages.
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cannot test the validity of such restriction. Finally, our selection equation, even

when fixed effects are included, may also suffer from omitted variable bias. For

example, inter-temporal preferences may change over time, even conditional on the

observables. This time-varying heterogeneity may in turn affect both labor market

outcomes and be correlated with BMI. Despite these limitations, our results extend

the literature of obesity and wages by providing evidence that the impact of BMI on

wages depends on job types but not on sorting.

6 Conclusion

We jointly model the relationship between wages and weight status and the selection

of workers into jobs with different levels of personal interactions by merging the

NLSY, a longitudinal data set with information on individual’s employment and

wages, with O*NET, a data set on job characteristics that help us identify the level

of interpersonal interactions that are associated with a given occupation.

We estimate the effect of obesity on wages using a semi-parametric specification

that accounts for time-invariant unobservable factors affecting selection, and for

potential endogeneity of body mass by including fixed effects. In our results we find

a wage penalty of about 10% for obese white women in jobs that require a high level

of personal interactions. These results therefore complement the literature finding an

impact of obesity on white women suggesting that this effect stems from the need for

personal interactions required by the job. Given the potential concern for selection

in these estimations, we find no strong evidence that selection plays a important role

in the estimated effects of obesity on wages.
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A Appendix: descriptive statistics

Table A1: Summary Statistics of NLSY 1987-2006

Women Men
White Black Hispanic White Black Hispanic Total

Employment Variables
Employed 0.96 0.92 0.94 0.96 0.91 0.9 0.95
Hourly Wage in Dollars in 2010 $ 11.99 9.42 10.71 15.25 10.80 13.29 13.19
Ln(Wage) in 2010 $ 2.63 2.43 2.53 2.87 2.57 2.74 2.72
High personal interactions job 0.65 0.48 0.61 0.55 0.30 0.44 0.56
Tenure (weeks) 215.72 212.01 197.17 245.88 194.44 209.69 226.63
Currently in School 0.11 0.07 0.09 0.08 0.05 0.07 0.09
Experience (1000s hours) 20.51 19.27 19.86 26.08 22.68 24.46 23.14
Body Mass Index
BMI Adjusted 25.10 28.81 26.85 26.61 26.80 27.40 26.22
Underweight (BMI < 18.5) 0.04 0.02 0.02 0.00 0.01 0.01 0.02
Overweight (25 < BMI < 30) 0.22 0.29 0.31 0.39 0.35 0.41 0.32
Obese (BMI: >30) 0.17 0.36 0.25 0.19 0.22 0.24 0.20
Demographics
Age 31.42 32.40 31.88 31.60 31.90 31.45 31.60
Highest Grade 13.83 13.24 12.65 13.48 12.52 12.34 13.48
Mother Highest Grade 11.78 10.34 7.95 11.65 10.15 7.64 11.30
Father Highest Grade 12.01 7.95 7.26 11.96 7.74 7.27 11.18
Number of Children 1.04 1.52 1.44 0.96 1.38 1.28 1.08
Age of Youngest Child 3.08 4.90 4.26 2.18 2.11 2.27 2.73
Never Married 0.28 0.46 0.26 0.36 0.51 0.39 0.34
Married 0.58 0.33 0.55 0.54 0.34 0.49 0.53
Separated 0.02 0.10 0.07 0.02 0.06 0.04 0.03
Divorced 0.12 0.11 0.11 0.08 0.09 0.07 0.10
Widowed 0.00 0.01 0.01 0.00 0.01 0.00 0.00
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Table A2: Summary Statistics of NLSY 1987-2006 for Females

Underweight Normal Overweight Obese Total
BMI Adjusted 17.64 21.90 27.19 35.66 25.69
Employment Variables
Employed 0.92 0.96 0.96 0.95 0.96
Hourly Wage in Dollars in 2010 $ 10.31 11.82 11.65 11.05 11.58
Ln(Wage) in 2010 $ 2.54 2.63 2.59 2.52 2.60
High personal interactions job 0.63 0.64 0.63 0.58 0.62
Tenure (weeks) 135.30 189.89 225.59 281.06 214.27
Currently in School 0.16 0.13 0.08 0.06 0.10
Experience (1000s hours) 13.09 18.12 21.94 25.60 20.31
Demographics
Age 27.90 30.20 32.57 34.77 31.57
Highest Grade 13.61 13.87 13.64 13.30 13.69
Mother Highest Grade 12.13 11.73 11.13 10.65 11.39
Father Highest Grade 11.64 11.73 10.96 10.08 11.22
Number of Children 0.84 0.95 1.32 1.43 1.13
Age of Youngest Child 2.43 2.72 3.97 4.68 3.39
Never Married 0.36 0.31 0.27 0.31 0.30
Married 0.41 0.54 0.59 0.52 0.54
Separated 0.04 0.03 0.04 0.05 0.04
Divorced 0.18 0.12 0.10 0.12 0.12
Widowed 0.00 0.00 0.00 0.00 0.00
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Table A3: Summary Statistics of NLSY 1987-2006 for Males

Underweight Normal Overweight Obese Total
BMI Adjusted 17.56 22.82 27.18 33.87 26.68
Employment Variables
Employed 0.83 0.94 0.96 0.96 0.95
Hourly Wage in Dollars in 2010 $ 8.75 12.80 15.86 15.81 14.57
Ln(Wage) in 2010 $ 2.34 2.75 2.90 2.85 2.83
High personal interactions job 0.36 0.49 0.54 0.51 0.51
Tenure (weeks) 100.74 183.62 260.98 304.17 237.17
Currently in School 0.11 0.11 0.06 0.04 0.08
Experience (1000s hours) 11.24 19.78 27.84 33.30 25.55
Demographics
Age 25.89 29.15 32.66 34.84 31.63
Highest Grade 11.98 13.34 13.41 13.01 13.29
Mother Highest Grade 9.91 11.33 11.21 11.03 11.22
Father Highest Grade 9.36 11.27 11.25 10.70 11.14
Number of Children 0.37 0.78 1.14 1.35 1.03
Age of Youngest Child 0.34 1.34 2.47 3.36 2.18
Never Married 0.72 0.49 0.31 0.28 0.38
Married 0.22 0.41 0.58 0.60 0.51
Separated 0.01 0.03 0.02 0.02 0.02
Divorced 0.04 0.07 0.08 0.10 0.08
Widowed 0.01 0.00 0.00 0.00 0.00
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Table A4: Summary Statistics Comparing Estimation and Excluded Sample NLSY
1987-2006

Estimation Sample Non-Sibling Sample
Employment Variables
Employed 0.95 0.91
Hourly Wage in Dollars in 2010 $ 13.19 11.83
Ln(Wage) in 2010 $ 2.72 2.64
High personal interactions job 0.56 0.55
Tenure (weeks) 226.63 129.66
Currently in School 0.09 0.13
Experience (1000s hours) 23.14 16.89
Body Mass Index
BMI Adjusted 26.22 26.33
Underweight (BMI < 18.5) 0.02 0.02
Overweight (25 < BMI < 30) 0.32 0.31
Obese (BMI: >30) 0.20 0.21
Demographics
Age 31.60 30.39
Highest Grade 13.48 9.79
Mother Highest Grade 11.30 10.84
Father Highest Grade 11.18 10.39
Number of Children 1.08 0.81
Age of Youngest Child 2.73 2.24
Never Married 0.34 0.37
Married 0.53 0.49
Separated 0.03 0.03
Divorced 0.10 0.10
Widowed 0.00 0.01
N × T 44,066 218,241
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B Appendix: job descriptors

We report below the set of abilities, skills and work activities we used to construct

the index that encompasses the level of personal interaction required on the job.

• Work Activities:

– Communicating with Supervisors, Peers, or Subordinates

– Communicating with Persons Outside Organization

– Establishing and Maintaining Interpersonal Relationships

– Assisting and Caring for Others

– Selling or Influencing Others

– Resolving Conflicts and Negotiating with Others

– Coordinating the Work and Activities of Others

• Skills:

– Speaking

– Social Perceptiveness

– Coordination

– Persuasion

– Negotiation

– Instructing

– Service Orientation
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C Relationship between BMI and wages, other groups

Figure C1: Relationship between BMI and wages across race and gender groups
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