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Abstract

In this paper we propose a feasible estimation procedure for a general class of mod-

els with social interactions which might display multiple equilibria. We evaluate the

efficiency and computational feasibility of different approaches to solving the curse of

dimensionality implied by the equilibrium multiplicity and we implement the proposed

estimation procedure using Add Health data to understand how group interactions af-

fect teenagers’ smoking behavior.
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1 Introduction

In this paper we study identification and estimation of models with multiple equilibria in

economies with social interactions. Social interactions refer to socioeconomic environments

in which markets do not necessarily mediate all of agents’ choices. In such environments

each agent’s ability to interact with others might depend on a network of relationships,

e.g., a family, a peer group, or more generally a socioeconomic group. Social interactions

represent an important aspect of several socioeconomic phenomena like crime, school per-

formance, risky behavior of teen regarding sexual activity, alcohol and drug consumption,

smoking, obesity, and, more generally, are related to neighborhood effects, which are im-

portant determinants of economic outcomes such as employment, the pattern of bilateral

trade and economic specialization, migration, urban agglomeration and segregation.

Social interactions typically give rise to multiple equilibria because they induce external-

ities. Consider for example a society of agents whose preferences for smoking are stronger

the higher the proportion of smokers in the population, for example because agents have

preferences for conformity. In this society, we may find equilibria where few people smoke

and equilibria where many people smoke if the dependence of agents’ preferences on the

proportion of smokers in the population is strong enough. In fact, uniqueness conditions

in this class of models, like e.g., Glaeser and Scheinkman (2001)’s moderate social influence

condition, are very strong limitations on the strength of the interactions. It is because of

externalities of this kind that the canonical model of social interaction, Brock and Durlauf

(2001b), also displays multiple equilibria, even in its simplest formulation.

In this paper, we refer to economies with social interactions as “societies.” We consider

a general society with (possibly) multiple equilibria, and assume the investigator observes

data realized from one or more of the equilibria. We define the likelihood of the data

conditionally on the equilibrium selection, and begin by introducing an estimator of the

structural parameters of the model based on maximizing the likelihood of the data over

both the set of equilibria and the set of the structural parameters. Such estimator requires

the ability to compute all of the equilibria that are consistent with a given set of parameters,
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often a daunting computational task.

Next, we propose a computationally simpler two-step estimation procedure that does

not require the computation of all feasible equilibria, or assuming an arbitrary equilibrium

selection rule. Furthermore, we evaluate the efficiency and computational feasibility of

the two approaches using Monte-Carlo simulations. We show, in the context of a simple

econometric model of social interactions, that while less efficient, the two step method is

faster by several orders of magnitude. We also show that estimation procedures based on

the adoption of an arbitrary equilibrium selection rule are less efficient (and again much

slower) than our two-step method, which is agnostic about equilibrium selection. Hence,

our method is particularly appropriate when the investigator does not have information

about how the equilibrium selection is performed.

Finally we implement the proposed estimation procedure using data on smoking be-

havior for different U.S. schools. We impose restrictions on which parameters are common

across schools and estimate the model using data from the National Longitudinal Study

of Adolescent Health (“Add Health”), a longitudinal study of a nationally representative

sample of adolescents in grades 7-12 in the United States during the 1994-95 school year.

We present various estimates of the model with different assumptions regarding the depen-

dence of the equilibrium selection across schools on various observable variables, such as

geo-locational factors.

In our data, an individual’s smoking level is positively associated with the number of

smokers within the individual’s friendship network. The positive association holds even after

controlling for individual characteristics such as grade, race and gender. Further, the data

exhibit large variation in aggregate smoking levels across schools. These facts are consistent

with social interactions of significant strenght and are suggestive that there may be scope for

different schools to be in different equilibria with regard to smoking prevalence. Structural

estimation of the social interactions model described above sheds light on whether the data

are indeed consistent with different schools exhibiting different social equilibria.

We find that social interactions are widespread in the schools we consider, both school-
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wide and at the level of personal networks. Our parameter estimates are consistent with

the presence of multiple equilibria in our empirical application. Simulations of the model

indicate that changes in the strength of local or school-wide social interactions, changes

in the number of friends in personal networks, or policies aimed at discouraging tobacco

use in schools can have highly non-linear and sometimes counter-intuitive effects, with the

possibility of large shifts in smoking prevalence because of the presence of multiple equilibria.

1.1 Related Literature

The identification and estimation of models with social interactions is an active area of

research. In this context, the issue of identification has been clearly analyzed by Manski

(1993) with regards to the linear in means model.1 Multiplicity of equilibria is typically not

an issue for this class of reduced form linear models. More generally, however, when agents’

policy functions are non-linear, multiplicities arise, especially when social interactions take

the form of strategic complementarities, as in the case of preferences for conformity with a

reference group. In this case, moderate social influence assumptions, limiting the effect of

social interactions, are required for uniqueness (see Glaeser and Scheinkman (2001)). In em-

pirical work, typically, sufficient conditions for uniqueness are assumed (Glaeser, Sacerdote,

and Scheinkman (1996)).

In the canonical non-linear model of social interactions – Brock and Durlauf (2001b)’s

binary choice model – multiple equilibria are hard to dispel (see Soetevent and Kooreman

(2007) for a generalization). In this case, social interactions are identified under func-

tional form assumptions on the stochastic structure of preference shocks, as well as non-

parametrically (Brock and Durlauf, (2007)). Brock and Durlauf (2001a), Krauth (2006),

and Soetevent and Kooreman (2007) extend the binary choice analysis to economies of local

interactions, that is to economies in which the social interactions occur not only at the level

of the population, but also at the level of small (finite) peer groups such as friends, family,
1 More recently, sufficient conditions for identification in this context have been proposed by Graham-

Hahn (2005), Bramoulle’, Djebbari, and Fortin (2007), Davezies, D’Haultfoeuille, and Fougere (2006), and
Lee (2007), among others.
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etc. Krauth (2006) allows for correlated effects, that is, for correlation in the preference

shocks across peers, under specific parametric assumptions).

In this class of models identification does not rely on assuming a specific equilibrium se-

lection mechanism. As a consequence, identification is obtained even if only one realization

of equilibrium is observed in the data, e.g., when the social interaction occurs at the pop-

ulation level and only the actions of agents belonging to a single population are observed.

Nonetheless, when data are available about several equilibrium realizations (populations) a

specific selection mechanism is often specified in the estimation procedure; see e.g., Krauth

(2006) and Nakajima, (2007)2.

Important and related work on the econometrics of multiple equilibria has also been

done in macroeconomics and in industrial organization. Dagsvik-Jovanovic (1994) study

economic fluctuations in a model with two equilibria (high and low economic activity) each

period; they postulate a stochastic (Markovian) equilibrium selection process over time

and estimate the parameters of such process with time series data on economic activity.

The adopted functional form specification allows them to derive closed form solutions of

the mapping from the set of equilibria to the set of parameters, which helps contructing

the sample likelihood for estimation. Imrohoroglu (1993) and Farmer and Guo (1995)

estimate dynamic macroeconomic models of inflation and business cycles, respectively, with

a continuum of equilibria by parametrizing equilibria with a sunspot process and recovering

from data the time series of the sunspot realizations under assumptions on the properties of

the process; see also Aiyagari (1995). Recent development of these methods are surveyed in

Benhabib and Farmer (1998). In this paper we show that assuming a specific equilibrium

selection (or sunspot) process is not always necessary, and may lead to inefficient estimates

if the assumed process is not the “true” data-generating process.

An important literature which studies the issue of identification in multiple equilibrium

models of industrial organization concentrates on simultaneous-move finite games of com-
2 In fact, this distinction is not clear in the literature. Krauth (2006), for instance, claims that ”an

equilibrium selection rule must usually be imposed to achieve point identification of parameters” (p. 259,
end of first paragraph). Nakajima (2007) makes the same point (p.9, second paragraph).
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plete information where the investigator only observes the actions played by the agents,

whereas the parameters to be estimated also affect the payoffs.3 Classic examples include

the entry-game studied by Bresnahan and Reiss, (1991), which has extensive applications

e.g., also in labor economics. In this class of games the model is typically not identified:

a continuum of parameter values is consistent with the same equilibrium realization of the

strategy profile. Partial identification is however possible, as shown by Tamer (2003) for

large classes of such incomplete econometric structures4. Others, as Bjorn and Vuong (1985),

Bresnahan and Reiss, (1991), and Bajari, Hong, and Ryan (2007), have opted for imposing

assumption which guarantee identification. Bajari, Hong, and Ryan (2007), in particular,

have interesting results about estimation as well. The estimation procedure they adopt

requires the computation of all equilibria of the game for any element of the parameter set

and the joint estimation of the parameters of an equilibrium selection mechanism (in an

ex-ante pre-specified class) which determines the probability of a given equilibrium, as in

Dagsvik-Jovanovic (1994).

Bajari, Hong, Krainer, and Nekipelov (2006) and Aguirregabiria-Mira (2007) study

instead, respectively, static and dynamic versions of a discrete entry-game of incomplete

information. In this context, they study the properties of a two-step estimator similar

in spirit to ours.5 A version of this estimator had been introduced by Moro (2002) in the

context of a model of statistical discrimination in the labor markets. In that application, the

equilibrium map linking wages to the individual characteristics of workers is different across

different equilibria and hence the model can be identified and estimated off cross-sectional

data.

Finally, our application to teenagers’ smoking behavior is also part of a large empirical

literature regarding social interactions. While the evidence for strong social interactions, or

peer effects, is overwhelming, part of this literature relies on linear-in-means models, which
3 See Berry and Tamer (2007) for a survey of this literature.
4 See also, Manski and Tamer (2002), Andrews, Berry, and Jia (2004), Ciliberto and Tamer (2004),

Beresteanu, Molchanov, and Molinari (2008). Echenique and Komunjer (2005) have results regarding the
identification of monotone comparative statics in incomplete econometric structures.

5 See also Pakes, Ostrovsky, and Berry (2004), Pesendorfer and Schmidt-Dengler (2004), Bajari, Benkard,
and Levin (2003). See also Aguirregabiria (2004) for some foundational theoretical econometric work.
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as shown by Manski (1993) are not identified, and attribute to social interactions any effects

that are possibly due instead to selection and/or common shocks. This is the case, e.g., of

Wang, Fitzhugh, Westerfield, and Eddy (1995) and Wang, Eddy, and Fitzhugh (2000); see

also the review in Tyas and Pederson (1998). Instrumental variable estimates, as in Norton,

Lindrooth, and Ennett (1998), Gaviria and Raphael (2001), and Powell, Tauras, and Ross

(2003), attempt to address these problems.6

Empirical studies of social interactions in smoking behavior which estimate binary choice

models along the lines of Brock and Durlauf (2001b), as we noted, overcome the identifi-

cation issue of the linear-in-means approach, but need to deal with multiple equilibria.

Krauth (2006) employs an array of exogenously pre-specified selection mechanisms. Simi-

larly, Soetevent and Kooreman (2007) impose a specific random - uniform, in fact - selection

mechanism. This approach requires in principle the computation of all equilibria for any

element of the parameter space.7 Nakajima (2007) also exploits a selection mechanism,

although the mechanism is implicitly determined by an adaptive learning mechanism.

2 A general society

Agents and groups. Consider a society populated by a finite set of agents indexed by

i ∈ I.8 Each agent i ∈ I is characterized by a vector of exogenous characteristics Xi. Let

X = (Xi)i∈I . The population is partitioned into sub-populations indexed by n = 1, ..., N ,

represented by disjoint sets In, such that
N⋃
n=1

In = I. Let #In denote the dimensionality of

set In and #I the dimensionality of I. Typically, different sub-populations are interpreted as

cities, neighborhoods, ethnic groups, schools. Each sub-population n is in turn characterized

by a vector of exogenous characteristics Zn. Let Z = (Zn)n∈N , Xn = (Xi)i∈In , and X =
6 See also Bauman and Fisher (1986), Krosnick and Judd (1982), and Jones (1984).
7 Though the structure of Nash equilibria of supermodular games can be exploited to reduce the set

of equilibria to be computed under strong assumptions on the support of theselection mechanism. We
conjecture this approach is adopted by Kraus (2006) though information on the selection mechanism in the
smoking application is not clearly reported.

8 We impose several regularity requirements in the exposition, e.g., continuity, compactness, finiteness,
even though they could be somewhat relaxed.
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(Xi)i∈I .9. Each agent i ∈ In belongs to a group g(i) ⊂ In.10 Local interactions, for example

peer effects, will manifest themselves in group g(i). Let #g(i) be the dimensionality of g(i).

Choices. Each agent i ∈ I chooses an element yi in a compact set Y (possibly a discrete

set) simultaneously. Let yg(i), yn, denote respectively the vectors of choices in groups g(i),

In, respectively, and y denote the vector of cohices of all agents. Finally let εi denote a

vector of idiosyncratic shocks hitting agent i ∈ I. We assume εi and εj are independent, for

any i 6= j ∈ I. Let εn denote the vector of aggregate shocks hitting all agents i ∈ In. Let

ε = (εn)n∈N and let fεn(εi, εn) denote the joint density of the shocks, which are assumed to

be defined on compact support. We allow the distribution fεn to depend on the choice vector

yn. Typically, these shocks are preference shocks, but they could also represent technology

shocks.

Equilibrium characterization. Let πn denote an A-dimensional vector of aggregates

defined at the level of sub-population n. Let in turn Π denote a vector of aggregates defined

at the level of the whole population. Let π = (πn)n∈N . We let πn be implicitly determined

by:

An(yn, πn,Π, Zn, εn) = 0,

for some vector valued smooth map An. Similarly, we let Π be determined by:

A(y,π,Π,Z, ε) = 0,

for some vector valued smooth map A.

Remark. Typically, πn contains an externality or a global social interaction effect;

e.g., if Y is binary, it could contain the fraction of agents in sub-population n who choose

a particular element of y ∈ Y : 1
#In

∑
i∈In Iyi=y (where Iyi=y is the indicator function of

yi = y). If the society contains a competitive market component, then πn typically contains
9 All characteristics can be thought of realizations from random variables in a compact support with

joint density fxz (X,Z).
10 By construction g(i) does not contain i. The restriction that agent i’s and his/her group g(i) belong

to the same subpopulation is irrelevant, but it simplifies notation.
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the competitive price vector (for those markets which clear at the level of the sub-population

n), and the function An encodes the aggregate excess demands in some of its components.

Similarly, Π contains global externalities and prices determined at the level of the whole

population.

We assume that the set of first order conditions which determine the choice of an arbi-

trary agent i ∈ In can generally be written as:

yi = yi
(
Xi,yg(i), πn, Zn,Π, εi, εn

)
, for some smooth function yi(·) (1)

if Y is a continuous set. If instead Y is a discrete set, we assume

Pr(yi = y ∈ Y ) = yi
(
Xi,yg(i), πn, Zn,Π, εi, εn

)
for some smooth function yi(·). (2)

Requiring the first order conditions to be satisfied jointly for any agent i ∈ I is equivalent

to requiring that y satisfies a Nash equilibrium of the simultaneous move anonymous game.

Remark. Typically, the first order conditions will result from agent i′s choice of yi to

maximize preferences:

V
(
yi, Xi,yg(i), πn, Zn,Π, εi, εn

)
To guarantee that the first order conditions are characterized by a continuous function

yi(.) we need to restrict agent i’s choice set to be compact and convex and his/her preferences

to satisfy smoothness and convexity.11

Note that our formulation assumes that the system of first order conditions and the

equilibrium conditions are bloc recursive, in the sense that Xi, εi enter the equilibrium

conditions only through the choice vector y.

Definition. An equilibrium of the society is a vector y ∈ Y I which satisfies the first
11 A technology constraint of the form

yi ∈ Y (Xi,yg(i), πn, Zn,Π, εi, εn)

on the choice set adds no complications as long as it defines a compact convex subset of Y.
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order conditions 1 (or 2 if Y is discrete) and the equilibrium conditions

An(yn, πn, Zn,Π, εn) = 0

A(y,π,Z,Π, ε) = 0

We assume that (y,X,π,Z,Π, ε) are observed by the econometrician12. However, the

econometrician does not observe the vectors εi, εn. Any agent i ∈ In instead, observes εi, εn

as well as the whole vectors X,Z before choosing yi. Depending on the specific society we

study, agent i ∈ In might observe some component of π,Π, e.g., market prices.

2.1 Special case 1: Binary choice model: Brock and Durlauf

Agent i ∈ In chooses an outcome yi ∈ {−1, 1}, to maximize preferences based on its own

choice, and on an aggregate of the peer’s choices. In its simplest formulation interactions

are only at the level of the sub-population In agent i belongs to:

max
yi∈{−1,1}

V (yi, Xi, Zn, πn, εi) = hn(Xi, Zn, εn) · yi + Jnyiπn + εi. (3)

The aggregate πn is defined to be the average choice in the population. Consequently,

the single equilibrium condition for the society, An(yn, πn, Zn,Π, εn) = 0 in our general

formulation, takes the simple form:

πn =
1

#In

∑
i∈In

(Iyi=1 − Iyi=−1) .

We assume that hn(Xi, Zn, εn) is linear and we eliminate any dependence from Zn for

simplicity,

hn(Xi, Zn, εn) = cnXi + εn.

The unobserved shock distribution fε(εi, εn) is assumed to satisfy independence fεn(εi, εn) =

fε(εi) · fn(εn). Furthermore, fε(εi) depends on agent i’s choice yi and it is extreme-valued,
12 Measurement error and sampling error can be easily added to our analysis.

10



that is13,

Pr (εi (−1)− εi (1) ≤ z) =
1

1 + exp (−z)
.

The utility of each choice yi is then:

V (yi, Xi, πn, εi (yi)) = (cnXi + εn) · yi + Jnyiπn + εi (yi) .

From the first order conditions, it can be shown that

Pr (yi = 1) =
1

1 + exp (−2φi)

Pr (yi = −1) = 1− Pr (yi = 1) =
1

1 + exp (2φi)

where

φi ≡ cnXi + εn + Jnπn.

Assuming as an approximation that #In is large enough that the Law of Large Numbers

applies for each sub-population n, we obtain the following characterization of equilibrium :

πn =
∑
i∈In

∫
tanh (cnXi + εn + Jnπn) fn(εn)dεn. (4)

It is straightforward to show that, typically, this equation has multiple solutions. In

fact, assuming scalar individual characteristics and abstracting from sub-population shocks

εn, it is shown by Brock and Durlauf (2001) that the resulting equilibrium condition is

πn = tanh (cnXi + Jnπn) which generally has one or three solutions.

Note that in (3) no social interactions connect different sub-populations, e.g., no mar-

kets or externalities are formed at the global level across sub-populations. The model can

be easily extended to allow preferences to depend on (i) local interactions, by adding de-

pendence on πg(i) = 1
#g(i)

∑
i∈g(i) (Iyi=1 − Iyi=−1) ; and (2) global interactions (at the level

of the whole population), through dependence on Π = 1
#I

∑
i∈I (Iyi=1 − Iyi=−1) .

13 More generally, for an extreme value distribution,

Pr (εi (−1)− εi (1) ≤ z) =
1

1 + exp (−βz)

where the parameter β is the variance of the distribution. But normalizing β = 1 is without loss of generality
in our setting, as it is equivalent to normalizing the units of the utility function.
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2.2 Special case 2: Continuous choice model; Glaeser and Scheinkman

Agent i ∈ In chooses an outcome yi ∈ [0, 1], as a solution of

max
yi∈[0,1]

V
(
yi, g

(
yg(i)

)
, Xi, Zn, πn, εi, εn

)
where g

(
yg(i)

)
=
∑

j∈g(i) γijyj , with γij ≥ 0,
∑
j∈g(i)

γij = 1. An equilibrium is then a

yn ∈ [0, 1]In such that: the first order conditions,

∂V
(
yi,
∑

j∈g(i) γijyj , Xi, Zn, πn, εi, εn

)
∂yi

= 0,

are satisfied, for any i ∈ In; and, at equilibrium,

πn =
1

#In

∑
i∈In

yi.

The extension to encompass global interactions at the level of the whole population is

straightforward.

3 Identification

In this section we study identification in the set-up of Section 2. We shall show that

the conditions for identification in multiple equilibrium models are not conceptually more

stringent than those which apply to models with a unique equilibrium.

For simplicity we restrict our analisys to the case in which the choice set Y is contin-

uous.14 Consider first the case in which no externality nor market operates at the global

level across sub-populations, so that the equilibrium conditions are simply,

A(yn, πn, Zn, εn; θn) = 0,

where θn ∈ Θ is the vector of parameters to be estimated (Θ is a compact set) - added for

clarity in the notation. We derive next conditions for θn to be identified only from data

regarding the single sub-population n, yn.
14 The case in which Y is discrete can be dealt with similar methods; see Sections 5 and 6; see also Brock

and Durlauf (2001b, 2007).
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An equilibrium in sub-population n also includes the first order conditions15

yi = yi
(
Xi,yg(i), πn, Zn, εi, εn; θn

)
.

Without loss in generality, let us assume that the vector of parameters θn can be parti-

tioned as θn =
[
θfocn , θeqn

]
so that:

A(yn, πn, Zn, εn; θn) = 0

yi = yi

(
Xi,yg(i), πn, Zn, εi, εn; θfocn

)
In general, the likelihood for the random variable yn, given θn, is defined as L(yn|θn).

In our setup, because of the possible presence of multiple equilibria, L(yn|θn) is a corre-

spondence:

L(yn|θn) =
∫

(εi,εn):


yi = yi

(
Xi,yg(i), πn, Zn, εi, εn; θfocn

)
πn = πn(θn, εn)


fε(εi, εn)dεidεn (5)

where
∫

denotes the Aumann integral and πn(θn, εn) is the equilibrium manifold which

satisfies An(yn,πn, Zn, εn; θn) = 016.

Let L(θn) be the set of measurable likelihood functions induced by (5), so that any

l(yn|θn) ∈ L(θn) is a measurable selection of the correspondence L(yn|θn).The standard

sufficient condition for identification of the parameter vector θn at θ0 is generalized as

follows.

Definition. For all θn ∈ Θ, θn 6= θ0,

arg max
l(yn|θ0)∈L(θ0)

l(yn|θ0) /∈ L(θn).

15 The dimensionality of the system of first order conditions is equal to the dimension of the vector of
choice variables yi. The dimensionality of the equilibrium conditions is equal to A, the dimension of the
vector of equilibrium variables πn.

16 See Aliprantis for the formal definition and a discussion of the properties of such integral. Loosely
speaking, the Riemann integral is not defined since πn(θeq

n , εn) is a correspondence; the Aumann integral is
defined for correspondences and is constructed by taking the union of the Riemann integrals of all measurable
selections of the correspondence; it coincides with the Riemann integral when applied to a measurable
function.
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The conditions for the identification of θfocn off of the first order conditions, given πn, εn,

are standard (and involve no issue of multiplicity of equilibria)17. We assume these condi-

tions are satisfied and hence θfocn is identified, given πn, Zn, εn. The equilibrium conditions

can therefore be represented as a map (a smooth manifold, in fact) from (θeqn , εn) into πn,

for given observables yn, Zn and given θfocn . Let πn(θeqn , εn) be such a map.

Suppose first that the econometrician has no prior information about the distribution of

εn, fn(εn). In this case, the realization of εn represents a vector of parameters which need

to be estimated along with θn. Equilibrium is unique if πn(θeqn , εn) is one-to-one. As Figure

1 and 2 illustrate, this is not necessary nor sufficient for identification. Instead,

Strong condition for identification: Identification obtains if πn(θeqn , εn) is onto;

that is, if the inverse equilibrium map
(
θeq

n
εn

)
(πn) is one-to-one.

Note that this condition is unrelated to the existence of multiple or unique equilibria;18

see panel (a) in Figure 1 for an equilibrium manifold which does not satisfy the requirement

that
(
θeq

n
εn

)
(πn) be one-to-one. Panel (b) shows instead a manifold πn(θeqn , εn) which is not

one-to-one (as an equilibrium manifold it displays multiple equilibria), but is such that the

inverse equilibrium manifold
(
θeq

n
εn

)
(πn) is one-to-one, and hence satisfies the condition for

identification.

Suppose instead that the econometrician has prior, e.g., functional form information

about the marginal distribution of εn, fn(εn).

Weak condition for identification: Identification obtains if i) θeqn (πn, εn) is one-to-

one and if ii) fn(εn) is a known (to the econometrician) and strictly monotonic function19.

As for the previous case, this requirement is unrelated to the existence of multiple or

unique equilibria.

Remark. Note that the condition that θeqn (πn, εn) be one-to-one is weaker than the
17 In particular, note that the presence of yg(i), πn between the independent variables induces Manski’s

reflection problem only non-generically, typically in the linear case.
18 Jovanovic (1989) shows that a unique reduced form is neither necessary nor sufficient condition for

identification.
19 Regularity conditions on fε(εn) are necessary to avoid the non-generic case in which the likelihood

of the data is maximized at multiple distinct values of the parameters. For instance, if fε(εn) is assumed
uniform, identification might not be guaranteed even if θeq

n (πn, εn) is one-to-one.
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(θn, εn)

πn

(θn, εn)

πn
(a) (b)

Figure 1: (a) Unique equilibrium, no identification; (b) multiple equilibria with identification

condition that
(
θeq

n
εn

)
(πn) be one-to-one. Furthermore note that the condition that fn(εn) be

known to the econometrician can be relaxed when different sub-populations n are observed

by the econometrician. In this case, in principle the parameters of the distribution fε(εn)

could be estimated along with θeqn . Finally, the condition that fn(εn) be a strictly monotonic

function can also be substantially relaxed in practical applications. Suppose for instance that

fn(εn) ∼ N(0, 1). While in this case the Weak condition for identification is not satisfied,

identification obtains if θeqn (πn, εn) is one-to-one and θeqn (πn, εn) 6= θeqn (πn,−εn).

It should be apparent that the analysis of identification in this section can be readily

extended to societies with global interactions at the level of the whole population. Note also

that measurement error and sampling error can be dealt with by appropriately re-defining

the set of shocks (εi, εn).

4 Estimation

The previous section argues that identification is no more an issue when the model has

multiple equilibria than when it has a unique equilibrium. This is not the case for estimation,

because the identification conditions imply the investigator’s ability to compute all the

feasible equilibria for every set of parameters, which computationally is ofter a daunting

task. To simplify notation, with no loss of generality, we continue restricting ourselves to
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the environment introduced in the previous section. We also assume the Weak condition

for identification is satisfied.

4.1 The direct estimation method

We define a direct Maximum likelihood estimator of θn as follows:

θ̂n = arg max
θn

max
l(yn|θn)∈L(θn)

l(yn|θn) (6)

Recall that L(θn) is the set of all measurable selections l(yn|θn) induced by the correspon-

dence L(yn|θn) defined by (5). Because of the possible multiplicity of equilibria, L(θn) is

very difficult to characterize. However, not surprisingly, the direct Maximum likelihood

estimation of θn has desired properties.

Proposition. The estimator θ̂n is consistent and efficient.

The estimator θ̂n can be computed by using the following algorithm: for each (θn, εn),

compute all the equilibria of the model, compute the likelihood of each equilibrium, choose

the maximum among them, integrate over εn and maximize over θn. Such procedure is

computationally difficult especially when the parametric form of An(yn,πn;Zn, εn; θn) = 0

does not allow the investigator to know in advance how many solutions the equilibrium

correspondence displays.

4.2 The two-step estimation method

We now introduce a simpler two-step estimation procedure. The first step consists in

computing an estimator π̂n for πn from data yn. In Glaeser and Scheinkman’s society, e.g.,

π̂n =
1

#In

∑
i∈In

yi.

Let

l(yn, π̂n|θn) =
∫

(εi,εn): yi=yi

(
Xi,yg(i),π̂n,Zn,εi,εn;θfoc

n

) f(εi, εn)dεidεn

The second step then involves estimating θfocn as
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θ̂
foc

n = arg max
θn

l(yn, π̂n|θn) (7)

It is important to notice that the equilibrium restriction π̂n ∈ πn(θn, εn) has not been

imposed yet. Furthermore, in the second step, we estimate θeqn as

θ̂
eq

n = arg max
θeq

n

∫
εn:θeq

n =θeq
n (π̂n,εn)

fn(εn)dεn

Note that the estimation does not require the computation of all the equilibria as a function

of θeqn , as identification requires that θeqn (π̂n, εn) be one-to-one by the Weak identification

condition.

Remark. The estimate of θ̂n obtained by the two-step method just described can be

refined by iterating the estimating procedure. From θ̂n a vector ŷn can be generated from

the first order conditions, and the two-step method then can be applied to ŷn rather than to

yn; and so on iteratively. We do not have general conditions to guarantee that this iteration

procedure converges.20

4.3 Equivalence Between Estimators

We can then prove the following proposition describing two alternative sets of sufficient

conditions for equivalence to hold.

Proposition. Sufficient conditions for equivalence of the two-step and the direct esti-

mation procedure of πn are either of the following:

(i) for any (πn, θn) there exists a unique εn such that πn = πn(θn, εn); moreover, εn ∼

uniformly; or

(ii) θn(πn, εn) is independent of εn and takes a unique value for any πn.
21

Proof. Condition i) states that there is always a εn such that πn is an equilibrium

given parameters θn. But then if εn is uniform, f(εn) is a constant and the second step is
20 See also Aguirregabiria and Mira (2007).
21 It is interesting to consider a relaxation of condition ii). Suppose θn(πn, εn) is independent of εn, but

it takes a unique value πn for πn in a subset (possibly strict) of its domain and is not defined everywhere
else. In this case equivalence does not hold, but the two-step procedure can be easily modified to guarantee
equivalence.
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redundant. It follows that any maximizer of (7) is also a maximizer of (6).

Condition ii) states that the realization of the data depend only on πn, not on θn.

Hence in the first step only πn is identified. The second condition states that the model

is nonstochastic, and that the mapping from πn to θn is a function. Hence, after having

estimated πn in the first step, it is possible to uniquely recover an estimate of πn in the

second step.

Moro (2002) has been the first to employ the two-step procedure to estimate a model

with multiple equilibria. In his model identifiying restrictions are imposed so that condition

ii) holds and therefore the equivalence of the two procedures follows readily.

4.4 Consistency of the Two-Step Estimator

We can now discuss the asymptotic properties of each of the two-step estimator outlined

above.

Proposition. The two-step estimator of (πn, θn) is consistent if the estimator for πn

from data yn is consistent.

4.5 Monte Carlo analysis of estimators

We now study in detail the estimation methods in the previous section in the context of

the binary choice model of Brock and Durlauf (2001), introduced in Section 2.1.

In this model, independence of εi across agents i ∈ I implies that, for the vector of

choices yn:

Pr (yn|Xn, πn, εn) =
∏
i

Pr (yi|Xi, εn, πn) ∼ (8)∏
i

exp ((cnXi + εn) · yi + Jnyiπn) .

Equation (8) suggests the following formulation of the likelihood function as a function of
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the parameter vector θn = {cn, Jn}:

l(yn|Xn, πn, εn; θn) =
∏
i

[Pr (yi = 1|Xi, εn, πn)]
1+yi

2 · [Pr (yi = −1|Xi, εn, πn)]
1−yi

2 ∼

∏
i

[exp (cnXi + εn + Jnπn)]
1+yi

2 · [exp (−cnXi − εn − Jnπn)]
1−yi

2

We run two sets of experiments: the first focuses on the Brock-Durlauf model in a single

sub-population, N = 1. We compare the performance of the 2-step estimator to that of

the full maximum likelihood estimator (what we call the “direct method”). The second set

of experiments is run in a multiple sub-population setting, N ≥ 2. Here we compare the

properties of the 2-step method to both the direct method and another estimation method in

which the multiplicity issue is addressed by explicitly incorporating an equilibrium selection

mechanism into the likelihood function, as in Dagsvik and Jovanovic (1994).

Note that the slope coefficients cn are identified in the single subpopulation case by

the variation in average smoking across different values of the X’s. An intercept term

in cn is only identified in the multiple subpopulation case with commmon parameters if

subpopulations select at least two different equilibria, because cn has the same effect on

behavior in all equilibria, but Jn’s effect is proportional to the equilibrium behavior. We

don’t include an intercept term in any of our specifications.

4.5.1 Results for a single subpopulation (N = 1)

We use a version of the Brock-Durlauf model with a single covariate Xi ∼ N (µx, 1) and

global interactions (no local interactions). Thus the model parameters are a pair θ ≡ (c, J) ;

note that we drop the index n for simplicity as N = 1. We draw an artificial sample of

20,000 students (characterized by their attribute Xi) and run a Monte Carlo experiment,

drawing N =160 vectors of the true parameters of the model. Parameter C is drawn from

a uniform with support [−0.8, 0.8], and parameter J from a uniform with support [1, 3].

For each random draw θtruej of the model parameters, j = 1, ...,N , we use the model to

generate simulated data ỹ
(
θtruej

)
, choosing one single equilibrium for a given experiment

(i.e., all students are acting according to the same equilibrium). For each simulated dataset
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Evaluation Criterion Direct Two step Direct, 2step initial est

RMSE, parameter C 0.0522 0.05043 0.05043

Bias, parameter C -0.00144 -0.00251 -0.00251

RMSE, parameter J 0.11604 0.10708 0.10706

Bias, parameter J -0.00749 -0.00542 -0.0039

Min time 163.37621 0.22234 157.19373

Max time 220.05349 0.34216 217.32402

Mean time 188.47448 0.26496 187.49023

Median time 188.14973 0.26686 187.09089

Table 1: Monte Carlo single subpopulation experiment - results (low-equilibrium)

ỹ
(
θtruej

)
we estimate the model parameters using both the 2-step and the direct methods,{

θ̂
2s

j , θ̂
d

j

}
, j = 1, ...,N . We then compare the properties of the two estimators, focusing

on several evaluation criteria: Bias (the average difference between the estimator and the

true parameter), Root Mean Squared Error (RMSE) (the root of the average of the squared

differences between the estimator and the true parameter) and computational speed.

Table 1 reports the results of the experiments in which the low-level equilibrium was

always chosen; results for the intermediate and high-level equilibrium are very similar and

are presented in Appendix A. The second column reports properties of the direct method

where the starting value θ0 used in the likelihood maximization routine was fixed at c =

0, J = 2. The third column reports statistics for the 2-step method. The fourth column

reports results for the direct method when the 2-step estimates θ̂
2s

j were used as initial

values for the maximization algorithm.

The 2-step method always exhibits lower RMSE than the direct method with fixed

starting values. This is surprising since the direct method represents the full maximum

likelihood estimation and should therefore achieve a weakly lower RMSE. The reason for

this result is that, even though we use a maximization algorithm – simulated annealing –
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that is very robust to discontinuities in the objective function, in a small but non-trivial

number of cases the algorithm gets “stuck” in a region of the parameters that correspond

to the wrong equilibrium, which yields estimates very far from θtrue. To address this issue,

we also use the direct method with θ̂
2s

j as starting values (column four): in this case, the

RMSE is the same or slightly lower than in the 2-step case.

The real advantage of the 2-step nethod, however, is in computational speed. Even with

this very stripped down model an estimation run with the direct method took a median time

between 158 and 188 minutes (depending on the choice of equilibrium); instead, the 2-step

method took roughly between 15 and 35 seconds. This is a vast computational advantage

that enables the researcher to estimate much richer models of economic behavior than if

one were to use brute force maximum likelihood.

4.5.2 Results for multiple subpopulations (N ≥ 2)

Our second set of experiments concerns a setting with multiple sub-populations n, where

all agents in a single subpopulation n, i ∈ In, are assumed to be in the same equilibrium

but each sub-population may be in a different equilibrium. A possible approach in this sort

of settings has been to postulate a selection mechanism across equilibria, which involves

a specific correlation structure (in equilibria) across the different sub-populations of the

society.

Dagsvik and Jovanovic (1994) and Bajari-Hong-Ryan (2006) take this approach, which

enables them to write the likelihood as the product of two terms: loosely speaking, the

probability of the data in a given sub-population n, conditional on parameters and on the

equilibrium chosen in n; and the probability that sub-population n is in that particular

equilibrium given the selection mechanism. Therefore, the likelihood is a mixture of likeli-

hoods conditional on equilibria, where the weights are equal to the probabilities of equilibria

given data. Thus the likelihood becomes a well-behaved function rather than a complicated

correspondence. The downside of this approach is that the econometrician has to take a

stand on the specific equilibrium selection mechanism being used.
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We perform two types of experimental comparisons. First we again compare the 2-

step estimator to the direct method. Secondly, we compare the 2-step estimator with the

estimators obtained by postulating an equilibrium selection (we call this the D-J method,

for Dagsvick and Jovanovic). Depending on the experiment, we use n = 10 or n = 25, with

either 10,000 or 150 agents each.22 To concentrate on equilibrium selection, we assume

the parameters are identical across sub-populations: (cn, Jn) = (c, J), for all n, and are

randomly drawn as in the single subpopulations experiments (details on the true parameter

draws are in Appendix A). Suppose the equilibrium set contains at most K equilibria,

indexed by k = 1, ...,K.Let

φn (πk) = Pr (sub-population n is in eqm. πk |yn−1,yn−2, ...) .

To simulate the experimental data, we used a second order Spatially Auto-Regressive

process (SAR(2)) as our equilibrium selection mechanism. The sub-population is ordered

on a one-dimensional integer lattice, where ”closeness” in the lattice represents ”closeness”

in terms of social distance and hence it justifies the correlation structure imposed on equi-

librium selection.23 Let K = 3, as is in fact the case in the Brock and Durlauf model we

simulate. The first two sub-populations are assigned one of the three possible equilibria

at random (independently), with probabilities (p1, p2, 1− p1 − p2). For n > 2, each sub-

population n adopts the same equilibrium as sub-population n− 1with probability a1, and

it adopts the same equilibrium as sub-population n− 2 with probability a2; with the resid-

ual probability (1− a1 − a2) sub-population n is assigned an equilibrium independently

of the preceding sub-population (again with probabilities (p1, p2, 1− p1 − p2)). The con-

ditional probabilities φn (πk) are computed recursively based on this particular selection

mechanism.

Table 2 collects results for the first step of experiments, comparing 2-step and direct

methods, where the evaluations are based on the results obtained from running 640 exper-
22 We were limited to using 150 artificial students in each sub-population n in the DJ experiment for

computational reasons.
23 In a time series context, correlation across time-periods is perhaps more natural. In a cross-sectional

context one can still determine “closeness” between sub-populations by using some notion of social distance:
see Conley (1999) or Conley and Topa (2003).

22



Correlation in eq. selection α1 = 1/3, α2 = 1/3 α1 = 0.1, α2 = 0.8

Evaluation Criterion Direct Two step Direct Two step

(1) (2) (3) (4) (5)

RMSE, C 0.04118 0.00571 0.10920 0.09355

Bias, C -0.00138 -0.00002 -0.00628 -0.00400

RMSE, J 0.16222 0.03810 0.35842 0.28770

Bias, J 0.02906 0.00263 0.12616 0.09020

Min time 161.998 2.25910 0.20495 0.00325

Max time 538.023 11.332 550.880 11.435

Mean time 350.937 4.958 295.898 4.2250

Median time 390.359 5.433 382.989 5.419

Table 2: Monte Carlo multiple subpopulations experiments: comparison of direct and two-

step methods

iments where the “true” parameters are randomly drawn using thesame criteria used in

the previous subsection. The second and third columns, concern an experiment in which

the parameters of the SAR(2) selection mechanism were set at a1 = 1/3, a2 = 1/3. In

this particular case, both RMSE and Bias measures are much lower for the 2-step than for

the direct method. We suspect that this is a consequence of the extreme computational

difficulties involved in maximizing the full likelihood in the multiple sub-populations case.

As in the single sub-population case, computational speed is again roughly two order of

magnutide lower for the 2-step than for the direct method.

The RMSE and Bias properties are quite sensitive to the specific parameterization of

the selection mechanism. Columns 4 and 5 display results for the case in which the SAR(2)

parameters are set at a1 = 1/10, a2 = 4/5. Here the two methods under comparison exhibit

similar properties in terms of RMSE and Bias, although computational speed is again much

higher for the 2-step.
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Eval. Criterion D-J (correct) Two step D-J (misspecified) Two step

(1) (2) (3) (4) (5)

RMSE, C 0.02362 0.02714 0.05569 0.02940

Bias, C 0.00096 0.00098 -0.00190 -0.00307

RMSE, J 0.11312 0.18630 0.22973 0.14404

Bias, J -0.00741 0.09832 0.01148 0.04788

Min time 321.76167 0.04592 161.24889 0.03551

Max time 419.45020 0.13887 300.50744 0.06411

Mean time 346.77147 0.05973 174.00611 0.04943

Median time 347.29222 0.06233 173.30057 0.04832

Table 3: Monte carlo experiments: comparison between the DJ method and the two-step

method

Finally, we turn to two experiments that perform a comparison between 2-step and D-J

methods. Both experiments were run with the same parameterization of the equilibrium

selection mechanism, with a1 = 1/3, a2 = 1/3. In Table 3, columns 2 and 3 we report

results for a situation in which the econometrician using the D-J method correctly models

the selection mechanism as a SAR(2) process, whereas columns 4 and 5 focuses on the

case in which the “D-J econometrician” chooses a misspecified model, assuming a SAR(1)

selection process.

The comparison is interesting: in the “correctly specified” case, the D-J method performs

slightly better than the 2-step in terms of RMSE and Bias, especially with regard to the

social interactions parameter J . In the “misspecified” case, instead, the 2-step method does

better than the D-J in terms of RMSE, and the difference in Bias is greatly reduced. This

points to an obvious advantage of the 2-step method, since it does not rely on making any

assumptions on the nature of the equilibrium selection process. Computational speed is

always much higher for the 2-step method, even more so than in the comparison with the
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direct method.

5 Social interactions and smoking

In this section we estimate several different specifications of the social interactions model

in Brock and Durlauf (2001), presented in Section 2.1. To this end we use the smoking

component of the Add Health data. The National Longitudinal Study of Adolescent Health

(Add Health) is a longitudinal study of a nationally representative sample of adolescents

in grades 7-12 in the United States during the 1994-95 school year. Add Health combines

longitudinal survey data on respondents’ social, economic, psychological and physical well-

being with contextual data on the family, neighborhood, community, school, friendships,

peer groups, and romantic relationships. A sample of 80 high schools and 52 middle schools

from the US was selected with unequal probability of selection. Incorporating systematic

sampling methods and implicit stratification into the Add Health study design ensured this

sample is representative of US schools with respect to region of country, urbanicity, school

size, school type, and ethnicity.

In the empirical application, therefore, we encode yi = 1 if agent i smokes and yi = −1

if he/she does not. Each sub-population n is a school. We consider only high schools, which

we define as schools having students enrolled in all grades between 9 and 12. Among these,

we include only the 45 schools that have at least 400 students in order to have a sufficient

number of smokers and minorities in each school. Even with this restrictions, there are

cases in which the parameter estimates for specific racial or ethnic groups are not estimated

with any precision.

5.1 Specification of parameters

First we estimate (cn, Jn) separately for each school n, to study the distribution of parameter

estimates across schools. Secondly, we estimate a set of model specifications in which the

model parameters (cn, Jn) are either constrained to be the same across schools or to be a

function of observed school attributes Zn: cn = c(Zn), Jn = J(Zn). Finally, we estimate
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specifications with multiple schools where we allow (cn, Jn) to contain random coefficients

as in (11)-(12) or in (13)-(14).

More specifically, in the case in which the parameters are specified as a function of

observed school attributes, let the dimension of the vector Zn be K, for any school n. We

adopt the following linear specification:

cn = c(Zn) = α0 +
K∑
k=1

αkZ
k
n; (9)

Jn = J(Zn) = γ0 +
K∑
k=1

γkZ
k
n. (10)

In the case in which we let the parameters contain random coefficients the specification

we adopt is:

cn = α0 + αn, with αn ˜N(0, σα) (11)

Jn = γ0 + γn, with γn ˜N(0, σγ) (12)

More generally we can also include school attributes Zn:

cn = α0 +
K∑
k=1

αkZ
k
n + αn, with αn ˜N(0, σα) (13)

Jn = γ0 +
K∑
k=1

γkZ
k
n + γn, with γn ˜N(0, σγ) (14)

We assume that the random fixed effects {αn, γn} are independent of each other and of

the individual random terms εi(yi) that enter the individuals’ random utilities. The idea

is to specify the probability distribution of {αn, γn} so as to put some structure on the

distribution of the realized {cn, Jn}.

5.2 Specification of social interactions

We explore also different specification of the structure of interaction inside schools. We

consider first the case in which interactions are only school-wide, and then the case in which

interactions are only local, that is, at the level of each agent’s circle of friends, which are
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identified in the Add Health individual friendship network data. Finally we consider the

general case in which interactions have both a school-wide and a local component.

In particular, in the general case each agent i ∈ In has preferences represented by

V
(
yi,yg(i), πn, Zn, Xi, εi

)
= cnXi · yi + JGn yiπn +

∑
j∈g(i)

JLn yiπg(i) + εi

where πg(i) = 1
#g(i

∑
j∈g(i) yj .

Only school-wide interactions are obtained with JLn = 0; while only local interaction are

present with JGn = 0.

5.3 Empirical results

In what follows we present summaries of the parameter estimates for a selection of specifi-

cations. We then perform some simulation exercises to compute the estimated effect on the

incidence on smoking of a given reduction in the level of social interactions.

In the general case in which interactions have both a school-wide (“global”) and a

local (personal network) component, and random fixed effects {αn, γn} are added to the

parameters, the likelihood of the data yn given πn,
[
πg(i)

]
i∈In

, θn in school n is:

logL(yn|πn,
[
πg(i)

]
i∈In

, θn) = −
∑
i∈In

 (
1+yi

2

)
· log

(
1 + exp

[
−2
(
cnXn + JGn πn + JLn πg(i)

)])
+
(

1−yi

2

)
· log

(
1 + exp

[
2
(
cnXn + JGn πn + JLn πg(i)

)])


+ Pr(αn) + Pr(γn).

5.3.1 School by school estimation

In this section the model parameters are estimated separately for each school, i.e., we

maximize a separate likelihood for each school. See the end of section 4.5 for a brief

intuition about the identification of this model. Table 4 reports the means and medians of

the parameter estimates across schools for three sets of estimates: with global interactions

only, with local interactions only, and with both local and global interactions24.
24 The parameter estimates for each school are available from the authors upon request.
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Global interactions Local interactions Local/Global int.

Variable Mean Median Mean Median Mean Median

Black -0.8375 -0.8463 -0.7349 -0.6718 -0.7370 -0.6731

Asian -0.1168 -0.2837 -0.0545 -0.2238 -0.0585 -0.2370

Hispanic 0.0313 -0.1607 -0.0373 -0.2172 -0.0211 -0.1699

Female 0.2670 0.2364 0.1137 0.1790 0.1260 0.1852

Age 0.1197 0.1048 0.0452 0.0439 0.1050 0.0785

Does not belong to a club 0.4033 0.3607 0.3338 0.2761 0.3397 0.2926

GPA -0.3943 -0.3766 -0.3342 -0.3162 -0.3281 -0.3241

Mom college -0.0606 -0.1141 -0.0578 -0.1182 -0.0351 0.1565

Dad at home -0.2262 -0.2353 -0.2655 -0.2520 -0.2035 -0.2152

Global Interaction 2.4648 1.9281 - - 1.0210 1.4099

Local Interactions - - 0.8077 0.8202 0.7962 0.8239

Table 4: Mean and median parameter estimates, all schools estimated separately

In all specifications the parameter estimates are qualitatively consistent with those from

a reduced form logit model of smoking behavior. The signs of the median coefficients

associated to each covariate are the same as in the logit and are broadly consistent with

other studies of smoking: minorities (Blacks, Asians, Hispanics) tend to smoke less than

Whites. Female students, older students, and students who do not participate in any school

clubs, organizations or athletic teams tend to smoke more. Students who perform better

academically and students whose father is present at home tend to smoke less.

Figures 2, 3, and 4 report the distribution of parameter estimates for the three spec-

ifications. Only parameter estimates with t test statistics greater than unity are plotted.

There is considerable dispersion around the medians across schools, especially with regard

to the racial and ethnic status variables. The results are strongest (in terms of consis-

tency of coefficient signs across schools) for Age, Club and GPA: in almost all schools being
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Figure 2: Distributions of parameter values, all schools separately, global interactions only
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Figure 3: Distributions of parameter values, all schools separately, local interactions only
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Figure 4: Distributions of parameter values, all schools separately, local and global interac-

tions
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younger (in a lower grade), belonging to a club, organization or team, and having a higher

GPA are unequivocally associated with less smoking. This pattern is confirmed across all

specifications we have estimated.

The school-wide interactions coefficient estimates are mostly positive and statistically

significant, but again there is a wide dispersion across schools. When local interactions are

omitted, the range of parameter estimates goes from about −2 to 6, indicating that some

schools exhibit negative social interactions. However, positive social interactions are present

in the majority of schools in our sample. This pattern is present in most specifications we

have examined; as we will see below, such estimates are associated with the presence of

multiple equilibria (with distinct equilibrium smoking levels) in a given school.

In the specification with only local interactions, the local interactions parameter esti-

mates are positive in all schools and mostly statistically significant. The distribution of local

interactions coefficients is tighter (less dispersed) than in the global interactions case. This

finding is strongly suggestive of the presence of social interaction effects operating through

individual friendship networks, although as we mentioned earlier it may also be consistent

with sorting into networks along unobservable traits.

The distribution of local interaction parameter estimates does not seem to be affected

much by the inclusion of the global interactions channel, whereas the estimated distribution

of school-wide social effects exhibits a larger number of schools with negative global inter-

actions than in the absence of local interactions. The medians reflect this pattern, with the

median global effect falling from 1.93 to 1.41 in Table 4 while the median local interaction

effect stays roughly the same at 0.82 in both specifications where it is present.

Therefore, we find a sizeable number of schools that exhibit both positive local inter-

actions, and negative school-wide effects. We conjecture that these schools may be more

stratified along racial, ethnic, or socio-economic status lines, and/or may exhibit more seg-

regated personal networks. This finding highlights the unique nature of the Add Health

data, since it allows one to contrast social interactions occurring within individual networks

to those occurring within larger reference groups. Studies that do not use data containing
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individual network data would not be able to detect these stark differences in the nature of

the interactions occurring for different definitions of reference groups25.

5.3.2 Multiple schools

Having estimated (cn, Jn) independently across schools, we now report the estimation re-

sults for specifications that impose some functional form on the way in which the model

coefficients vary as a function of observed school-level characteristics. To do so, we estimate

our social interactions model jointly for all schools in our sample, where the overall log

likelihood is the sum of the individual schools’ contributions.

First, as a baseline, we report estimation results for a specification in which the model

parameters (cn, Jn) are the same across all schools. This specification is obviously not a

good fit of the data, since we have shown in the previous discussion that the distribution

of parameter estimates across schools exhibits a significant amount of dispersion for all

variables. All the same, this is a good robustness check to see if our estimation results seem

consistent across specifications.

Table 5 collect results for the case with school-wide interactions only and that with

both school-wide and local interactions, respectively. The estimates are qualitatively similar

across the two cases, and with the distribution medians reported for the unconstrained cases

in the previous Section 5.3.1. Again minorities smoke less; female and older students are

more likely to smoke; students with higher GPA’s, who participate in school organizations

or teams, and whose fathers are present at home smoke less. Interestingly, as in the previous

Section, the introduction of local interaction effects alongside school-wide effects lowers the

estimated school-wide effects: the estimated J-school-wide falls by about half, from 1.34 to

0.67, while the local interaction term is equal to 0.82.

Next, we turn to a specification in which parameters – while still deterministic – are

specified as a function of observed school attributes, Zn, as in equations (9) and (10).

We have chosen the following list of attributes describing the presence of tobacco-related
25 See Manski (1993), on the importance of having accurate data on the extent and definition of relevant

reference groups.
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Figure 5: Distributions of parameter values, all schools, deterministic coefficients function

of school characteristics
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Variable Coefficient Std. err. Coefficient Std. err

Black -0.6926 0.0343 -0.4429 0.0357

Asian -0.1315 0.0372 -0.0712 0.0412

Hispanic -0.2551 0.0261 -0.1664 0.0314

Female 0.0961 0.0154 0.0716 0.0177

Age 0.0684 0.0025 0.0530 0.0028

Does not belong to a club 0.3013 0.0190 0.2028 0.0221

GPA -0.3334 0.0099 -0.2654 0.0110

Mom college -0.0004 0.0173 0.0163 0.0195

Dad at home -0.1205 0.0202 -0.0825 0.0222

Global interactions 1.3388 0.0585 0.6663 0.0677

Local interactions 0.8249 0.0155

Log Likelihood -12935.04 -11253.67

Table 5: All schools, constant parameters

policies at a given school: whether the school enacts state-mandated training on the use

and consequences of tobacco products, whether the school has implemented rules regarding

the use of tobacco products by students, and whether the school has implemented rules

regarding the use of tobacco products by its staff. We have also added the following list

of attributes pertaining to the county in which the school is located: whether the county

is urban or rural, the percentage of families under the povery line, the fraction of college

educated in the population 25 and older, the fraction of female (male) adults in the labor

force.

The estimation results are reported in Figure 5 and Table 6. The first observation is

that once again, the distributions of estimated coefficients across schools reported in Figure

5 are qualitatively similar to those in the unrestricted specifications in Figure 4. However,

the parameter estimate distributions tend to exhibit less dispersion across schools than the
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unconstrained ones; for instance, the distribution of the Age parameters in Figure 5 ranges

from about -0.15 to about -0.32, whereas in the unrestricted case it ranges from about -0.1

to -0.5. The same is true for most of the other attributes as well as for the local interaction

parameters. This observation motivates our use of the random coefficients specifications, to

better capture the wide dispersion across schools of the coefficients associated to individual

attributes. Further, the distribution of school-wide interaction parameters only ranges from

0 to about 1.5 and does not include any negative values, unlike the unrestricted case.

Some of the parameter estimates for the c(Zn) and J(Zn) functions are noteworthy. For

instance, the mostly positive coefficients associated to female students are greatly reduced

in neighborhoods with high poverty levels and high female labor force participation, sug-

gesting that female smoking may be related to higher socio-economic status. The positive

relationship between student age and smoking is again stronger in high poverty areas. The

negative association between academic achievement and smoking is stronger in more highly

educated neighborhoods. The finding that Dad’s presence at home is associated with less

smoking is reinforced in neighborhoods with high female labor force participation, perhaps

indicating that one parent’s presence and control is even more crucial when the other parent

works outside the home.

Interestingly, a school’s tobacco-related policies can have a large impact on the strength

of the social interaction terms. The presence of tobacco rules for students is associated

with lower school-wide interactions parameters, whereas tobacco rules for the staff seem to

increase the strength of school-wide interactions but slightly reduce the strength of local

interactions. Of course these school policy variables are largely endogenous, but the fact

that tobacco policies are related to stronger or weaker social interaction terms is important

and we will come back to it in our discussion of counter-factual experiments.

Finally, it is worth noting that neighborhood poverty levels have a huge impact on

school-wide interactions estimates. This suggests that some of the variation in smoking

across schools that is unexplained by observed student attributes and is attributed in the

estimation to school-wide interaction effects may be in fact a school-wide fixed effect related
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Female Age No club
Intercept 0.4412 (0.1274) -0.0055 (0.0063) 0.2358 (0.2049)

% Urban -0.0081 (0.0637) 0.0128 (0.0079) -0.0004 (0.0731)

% Poverty -1.2608 (0.3502) 0.1345 (0.0430) 0.0356 (0.4976)

% College over 25 0.3816 (0.3348) 0.0552 (0.0216) 0.3184 (0.4615)

Female Labor Force P.R -0.5580 (0.3287) 0.0369 (0.0131) 0.5364 (0.4951)

Male Labor Forece P.R. 0.0063 (0.1833) -0.0171 (0.0076) -0.5182 (0.3240)

Tobacco training -0.0781 (0.0385) 0.0146 (0.0060) 0.0006 (0.0547)

Tobacco student policy 0.1094 (0.0820) -0.0176 (0.0070) 0.2000 (0.1112)

Tobacco staff policy -0.1404 (0.0776) 0.0275 (0.0064) -0.1699 (0.1027)

Grade point average Mom college Dad Home
Intercept -0.1204 (0.0342) -0.2170 (0.1730) 0.0169 (0.1043)

% Urban 0.0238 (0.0325) 0.1395 (0.0724) -0.0034 (0.0719)

% Poverty 0.1027 (0.1801) -0.2135 (0.4198) 0.2747 (0.4173)

% College -0.3549 (0.1238) -0.3789 (0.3567) 0.2357 (0.3816)

Female Labor Force P.R. -0.1927 (0.0764) -0.1708 (0.4820) -0.9254 (0.2598)

Male Labor Force P.R 0.0487 (0.0455) 0.5053 (0.2663) 0.2454 (0.1423)

Tobacco training -0.0029 (0.0258) -0.0218 (0.0458) 0.1247 (0.0484)

Tobacco student policy -0.0301 (0.0421) 0.0130 (0.1161) -0.1311 (0.0970)

Tobacco Staff policy 0.0171 (0.0389) -0.0360 (0.1169) 0.1392 (0.0907)

Local interactions Global Interactions
Intercept 0.9120 (0.1332) -0.2492 (0.1553)

% Urban -0.0844 (0.0549) 0.5883 (0.1727)

% Poverty -0.4960 (0.3429) 3.8357 (0.8214)

% College 0.0548 (0.3040) 0.0668 (0.5481)

Female Labor Force P.R. -0.0976 (0.3559) -1.5061 (0.2835)

Male Labor Force P.R 0.2248 (0.2083) 0.6361 (0.2075)

Tobacco training -0.0416 (0.0357) 0.5226 (0.1460)

Tobacco student policy -0.0099 (0.0741) -0.5529 (0.1555)

Tobacco Staff policy -0.0790 (0.0749) 0.7528 (0.1464)

Table 6: All schools, deterministic coefficients function of school characteristics (standard

errors in parenthesis, log likelihood -11130.3049)

to the area’s socio-economic status. Therefore, as mentioned earlier, it stresses the value of

having individual friendship network data to estimate local social interaction effects.
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Figure 6: Distributions of parameter values, random coefficients. Left three panes: global

interactions only; right four panes: both local and global interactions

5.3.3 Multiple schools, random coefficients

As mentioned in the previous section, letting (cn, Jn) depend on observed school charac-

teristics in a deterministic fashion might not be sufficient to capture the wide variation of

parameter estimates across schools. Therefore, we also use the random coefficient specifi-

cation described in Section 5.1, to better capture the dispersion in coefficient values across

schools. We first estimate a version with only an intercept and a random term, as in

(11)-(12), and then augment it with school level characteristics Zn as in (13)-(14). For

computational feasibility, we only use two individual student attributes, namely age and

grade point average, since the introduction of random coefficients raises the number of

parameters to be estimated considerably.

Figure 6 reports estimated distributions for two specifications without Zn, in the case

with only school-wide interactions (left three panes) and with both school-wide and local

interactions (right four panes). Results are qualitatively consistent with the specifications
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Figure 7: Distributions of parameter values, random coefficients and school characteristics

estimated so far. As expected, the range of values for the age and GPA coefficients is

wider than in the deterministic case (Figure 5) and very similar to that of the unrestricted

school by school specifications (Figures 2 and 4). The distributions of the school-wide only,

and school-wide/local parameter estimates are also very similar to those in the unrestricted

cases. Again, introducing local interactions effects generally lowers the school-wide interac-

tions estimates, with some schools exhibiting negative school-wide coefficients.

Figure 7 and Table 7 report estimation results for the full model with random coefficients

and school attributes Zn. The Table only reports the parameters of the deterministic portion

39



Age GPA Local Inter. Global Inter.

Intercept 0.041 (0.005) -0.167 (0.028) 1.919 (0.121) 1.564 (0.155)
% Urban 0.048 (0.008) 0.011 (0.040) -0.229 (0.135) 0.202 (0.193)
% Poverty 0.021 (0.041) 0.228 (0.204) -3.694 (0.655) -2.379 (0.950)
Female Labor FPR 0.013 (0.013) 0.052 (0.061) -0.823 (0.265) -0.218 (0.318)
Tobacco training -0.000 (0.006) -0.087 (0.031) -0.052 (0.114) -0.171 (0.152)
Tobacco stud. policy -0.009 (0.007) 0.055 (0.034) 0.100 (0.108) -0.663 (0.169)
Tobacco staff policy -0.007 (0.007) -0.203 (0.038) -0.166 (0.127) -0.021 (0.172)

Table 7: All schools, random coefficients (standard errors in parenthesis, log likelihood

-11034.074)

of the c(Zn) and J(Zn) functions, i.e. the (α0, αk, γ0, γk) parameters. Again, the estimated

distributions in Figure 7 are remarkably similar to those estimated in the unrestricted case,

with positive association between smoking and age, negative association with academic

achievement, significantly positive local interactions effects and a bimodal distribution for

school-wide effects (with negative coefficients in some schools).

Table 7 also shows roughly similar patterns to the deterministic specification in Table 6:

the age effect on smoking is higher in high poverty neighborhoods; the negative coefficients

associated to grade average are weakened in high poverty areas (which moves in opposite

direction to education levels). Remarkably, tobacco rules for school staff again reduce the

strength of local interactions, whereas tobacco rules for students weaken the estimated

school-wide interactions estimates. As we will see in the next Section however, such policy

effects do not necessarily imply less smoking.

6 Counterfactual experiments

In this section we use our estimation results to perform two sets of exercises. Firstly,

given the estimates, we wish to compute the set of possible equilibria for all schools, to

see whether in fact the estimated model parameters lie in regions of the parameter space
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School ID N Global int. (J)
Percentage of smokers

Data Simulated eq. Equil. 1 Equil. 2 Equil. 3

77 1191 1.51 10.3 10.1 10.5 42.2 93.1
56 1243 3.07 20.1 17.9 3.9 19.2 99.9
57 504 0.55 23.4 23.4 24.0 - -

Table 8: Equilibrium smoking levels in a sample of schools

that give rise to multiplicity of smoking equilibria. A corollary of this analysis is that we

are able to determine whether a given school is in the equilibrium with the lowest possible

smoking prevalence, or if there are other equilibria for that school and with the same

parameter estimates that exhibit lower levels of smoking. Secondly, we want to perform

counter-factual exercises to simulate the effect of lowering or increasing the strength of the

interactions parameters on smoking. Since we have seen that some tobacco policies are

associated with lower or higher interactions effects, this seems like an interesting analysis

to gain some insight on the possible effects of such policies.

6.1 The prevalence of multiplicity

We use the model specification with random effects (no school covariates Zn) and school-

wide interactions only, to perform our simulations. This specification makes it manageable

to compute the equilibrium mapping because it uses only two student attributes, thus

making it easier to numerically integrate over the empirical distribution of these covariates

(see equation (4)). At the same time, we have seen that this specification seems to capture

well the variability of parameter estimates found in the unrestricted cases. Here we focus

on the school-wide interactions case as an illustration, again for computational ease. Later

we study the case with both local and school-wide interactions.

Table 8 reports the equilibria computed for a sample of schools, as an illustration (results

for all schools are in Appendix B). The first and second columns report school ID and

number of observations; the third column contains the estimated school-wide interactions
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Figure 8: Equilibrium mapping as a function of global interactions J (left pane) and “cost”

Cn (right pane). The mapping becomes flatter’ as J decreases and moves down as Cn

decreases

parameter; average smoking in each school in the data is reported in column 4; column 5

reports the simulated smoking prevalence given the equilibrium that is closest to the average

smoking level in the data; columns 6-8 report the computed equilibria in the case of multiple

equilibria, or the single equilibrium that arises for that school.

Actual smoking averages are consistent with one of the simulated equilibria in all cases;

small differences are due to the fact that we had to discretize the support of the GPA variable

for computational reasons. So this model specification captures well the large variation in

smoking behavior across schools. Multiple equilibria are present in 30 out of 45 cases, given

our parameter estimates (see, e.g, schools #77 and 56 in the table). This validates our

approach as it shows that in this application and given the data multiple equilibria are

prevalent. Finally, in 21 out of 30 schools, the actual fraction of smokers is consistent with

the intermediate equilibrium (this is the case for schol #56). Thus in roughly two out of

three schools where multiple equilibria arise, there exists one other equilibrium with a lower

(and typically substantially lower) smoking prevalence. This is again very important from

a policy perspective as it raises the question of whether it is feasible to move a school from

one equilibrium to another, and if so how.

Before turning to the counter-factual exercises, we illustrate the effects of changes in the
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School ID Interactions
Percentage of smokers

Data Equil 1 Equil 2 Equil 3

77

Baseline 10.3 10.5 42.2 93.1

J reduced 5% 13.5 40.4 91.6

J reduced 10% 18.1 37.2 89.7

56

Baseline 20.1 3.9 19.2 99.9

J reduced 5% 7.1 13.8 99.9

J reduced 10% 99.9

Table 9: Simulations with global interaction estimates

strength of social interactions Jn in Figure 8. The dotted line in the left pane shows how

the equilibrium mapping moves for a representative school following a 10% reduction in the

level of Jn (the mapping has been “rotated” so that the 45 degree line is horizontal; the axes

domain is {−1,+1}, with -1 corresponding to no students smoking and +1 to all smoking).

The mapping becomes “flatter”, and as a result the equilibria (points where the mapping

crosses the 45 degree line) move in interesting ways: specifically, the low equilibrium moves

up, whereas the intermediate and the high equilibria both move down. Thus, depending on

whether a given school is in the low or the intermediate equilibrium, the same reduction

in social interactions may increase or decrease the equilibrium level of smoking (assuming

the school stays in the same equilibrium). In addition, as Jn decreases even further (dash-

dotted line), the equilibrium mapping ends up crossing the 45 degree line only once (at the

previous “high” equilibrium), thus inducing a very large change in smoking prevalence.

These patterns are confirmed in our counter-factual simulations. For simplicity, Table 9

reports two examples to illustrate our findings (the full results of our exercise are available

from the authors). The top panel of Table 9 focuses on school #77. Here the prevalence of

smokers in our sample is 10.3%, and the school is in the low equilibrium. As the strength of
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social interactions is reduced by 5% and 10%, the fraction of smokers in the low equilibrium

actually rises to 13.5% and 18%, respectively (consistently with Figure 8, smoking declines

in both the intermediate and the high equilibria). The bottom panel tells a different story:

here, because the school finds itself in the intermediate equilibrium, a 5% reduction in Jn

is accompanied by a reduction in smoking prevalence (from 19.2% to 13.8%). A further

reduction in Jn to 90% of its starting level makes two of the three equilibria disappear,

leaving only the high smoking one: thus the school jumps to a situation in which almost every

student smokes. Interestingly, if social interactions are turned off entirely (i.e., reducing Jn

to zero), smoking prevalence actually declines to 87.4%.

These strong non-linearities in the effect of a reduction in social interactions stress the

importance of estimating a structural model that explicitly takes into account the possibility

of multiple equilibria induced by the positive feedbacks among agents’ actions. These are

very important from a policy perspective: as a mere illustration, if the adoption of rules for

tobacco use by school staff indeed reduces the strength of school-wide social interactions,

such a policy may have the unintended consequence – in some schools – of actually increasing

smoking prevalence in the school.

A final caveat concerns equilibrium selection. Both the model we use in this application

and our estimation approach are silent on the actual mechanism through which an equi-

librium is selected. It could very well be that equilibria are “sticky” and that it is very

difficult to move a school from one equilibrium to another. Even so, our illustration shows

that the same policy may have very different effects in different schools, depending on the

specific equilibrium the school finds itself in.

6.2 Counterfactual experiments with both local and school-wide interac-

tions

Given our school-by-school estimates with the entire set of demographic controls, we focus

on a single school and perform two sets of simulation exercises using the Brock-Durlauf

(BD) model with both local and school-wide interactions. First, given our estimates for a
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representative school, we simulate the smoking process over time for a variety of different

scenarios: changing the intensity of local and/or school-wide interactions; introducing a tax

on cigarettes; changing the number of friends in students’ friendship networks.

Secondly, again given our estimated parameter values, we simulate the smoking process

for an artificial school, to study the impact of different network structures for instance

looking at perfectly segregated vs perfectly integrated personal networks.

Because we allow for both local and school-wide interactions, it is very difficult to com-

pute the model equilibria and to obtain a closed form solution for the stationary distribution

of the model. This is why we resort to simulations to compute the long run fraction of smok-

ers. Specifically, we simulate the BD model as a first-order Markov process in discrete time,

where the agents’ state in each period (a configuration of smokers and non-smokers in the

school) is a function of the state of all agents at the previous period.

All agents change state at each period, based on the smoking configuration in the pre-

vious period. Our simulation results do not change if we instead allow only one randomly

drawn agent to change her state in each period. We let the process run for many periods

(2,400) and report the long run average out of the last 2,000 iterations.

6.2.1 Results for a representative school

We pick school #56 as a representative school, both in terms of demographics and in

terms of its parameter estimates. Figures 9-13 report the results of our counterfactual

experiments to show the importance of multiple equilibria and non-linearities. Figure 9

reports the equilibria we find for several values of the local interactions parameter (displayed

in the vertical axis). The horizontal lines display the basin of attraction of the low level

equilibrium. For example, at the estimated value of J, when setting an initial fraction

of smokers between 0 and 16%, the procedure converged to a low-level equilibrium with

1.05 percent of students smoking. For all other levels of initial fraction of smokers, the

procedure converged to the high level of smoking, always to 100% of students smoking.

Figure 10 repeats the exercise by varying the global interaction parameter, Figure 11 by

45



3.6
1.6
1.3
1.15
1.05
1.05
1
0.9
0.85
0.65

0.35
0.15

0.05

Only high-level equilibrium (100% smokers)

Length of line represents the
basin of attraction of low-level equilibrium

Percentage of smokers in low-level equilibrium

Local interaction parameter

0.2J
0.5J
0.8J
0.9J

0.95J
0.99J

J
1.01J
1.05J
1.1J
1.2J
1.5J
1.8J

2J

0.1J
0.05J

0

5 10 15 20 25 30 1000
Initial percentage of smokers

Figure 9: Percentage of smokers and basins of attraction of low-level equilibrium in a repre-

sentative school for different values of the local interaction parameter (High level equilibrium

at 100% smokers in every simulation)

changing the number of friends, Figure 12 by changing both local and global interactions,

and Figure 13 by changing the cost of smoking.

Overall, multiple equilibria are pervasive. In our simulations, only the high and low

equilibria appear in the long run. The middle equilibrium does not seem to be stable, even

though for certain choices of parameter values and for certain starting points (in terms

of smoking averages) the process seems to tend to an intermediate equilibrium for a few

iterations. Eventually however it goes to one of the two extreme equilibria.

Changes in the strength of local and/or school-wide interactions, or in the number of

friends in students’ personal networks, all go in the same direction (see Figures 9-11). As

we reduce J , G, or the number of friends, the basin of attraction of the low equilibrium (i.e.

the set of initial conditions from which the process reaches it) shrinks, until it eventually
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Figure 10: Percentage of smokers and basins of attraction of low-level equilibrium in a

representative school for different values of the global interaction parameter. High level

equilibrium at 100% smokers unless indicated

disappears; this is consistent with the left panel of Figure 8 (which illustrates movements

in the equilibrium mapping following a change in G). The fraction of smokers increases

slowly at the low equilibrium, until it jumps to a near-totality of smokers in the high

equilibrium when the low equilibrium disappears. Local and social interactions appear to

be “strategic complements” (Figure 12): keeping the strength of local (respectively, school-

wide) interactions fixed, the basin of attraction of the low equilibrium shrinks as the strength

of school-wide (respectively, local) interactions decreases, and viceversa.

Figure 13 reports the effect of changes in the individual cost of cigarettes (measured

in “utils”): specifically, an increase in the cost of smoking is modeled as a lowering of the

intercept in the random utility of smoking of each student. This experiment changes the

long run level of smoking in the direction that one would expect from the right panel in

Figure 8. As the utility cost of smoking goes down (i.e., the intercept of Ci rises), the basin

of attraction of the low equilibrium shrinks and the fraction of smokers in the school rises

slightly, until the process jumps to the high equilibrium where almost everyone smokes.
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Figure 11: Percentage of smokers and basins of attraction of low-level equilibrium in a

representative school for different number of friends

6.2.2 Results for an artificial school

For these experiments we construct an artificial school with similar characteristics to the

actual school we used above. We consider a school with 800 students disposed on a circle.

Every student i has R friends, defined as the R students directly to the right of i. The

baseline number of friends is R = 4 (which is the median number of friends for students in

our representative school #56), but we vary this parameter in the simulations. Note that

friendship ties are modeled as directed links: student i “names” student j as a friend, but

not viceversa. Initially all students are homogeneous, and have the same characteristics as

the median student in school #56: non-Black, non-Asian, non-Hispanic, female, 16 years

old; participates in school clubs and associations; has a 3.0 GPA; mom has less than a

college education; dad lives at home.

Figures 14-16 report the results of our experiments on the strength of local and global

interactions (changes in J,G), and on the number of friends R. The artificial school be-

haves very similarly to the actual one. Reductions in local interactions J, in school-wide

interactions G or in the number of friends R all induce the basin of attraction of the low

equilibrium to become smaller and eventually disappear. While the low equilibrium per-
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Figure 12: Percentage of smokers and basins of attraction of low-level equilibrium in a rep-

resentative school for different values of local and global interactions. High level equilibrium

always 100% smokers unless indicated
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Figure 13: Percentage of smokers and basins of attraction of low-level equilibrium in a

representative school for different “cost” values of smoking

sists, reductions in these parameters are associated with a slight increase in the fraction

of smokers in the school. As with the actual school, holding fixed any two parameters in

(J,G,R) while reducing the third one has the same effect on the basin of attraction of the

low equilibrium and on the fraction of smokers in this equilibrium while it persists.

Figure 17 reports the effects of changing the demographic characteristics of all artificial

students in the school; agents are still homogeneous here. These experiments are equivalent

to shifting the intercept of the individual utility of smoking (conceptually, it is the same

as introducing a “tax/subsidy” on cigarettes). For Black, male, or high-GPA students the

intercept shifts down relative to our baseline student: this induces the basin of attraction

of the low smoking equilibrium to widen, and the level of smoking in the low equilibrium

falls slightly. Changing our baseline artificial student to an older student, or to a student

who does not participate in school clubs, induces the opposite effect. An artificial school

made up of students that combine all the demographic characteristics associated with higher

propensities to smoke is characterized by the disappearance of the low smoking equilibrium.

Figures 18 and 19 look at the effects of introducing two different types of students in

the artificial school: type L students are the least likely to smoke based on their individual
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Figure 14: Percentage of smokers and basins of attraction of low-level equilibrium in artificial

school for different values of the local interaction parameter. High level equilibrium at 100%

smokers in all simulations

characteristics; type M students are the most likely to smoke. We vary both the fraction

and the arrangement of the two types within the artificial school (i.e., along the circle). In

Figure 18 we vary the relative fraction of the two types, but maintain an arrangement that

is “perfectly integrated”: LMLM..., or LLLMLLLM..., or LLLLLLLMLLLLLLLM....

In Figure 19 instead, we simulate perfect “segregation”: the school is divided into two

subgroups, one where everyone is of type L, the other where everyone is of type M . Local

interactions only occur within the two subgroups (that is, friendship networks are perfectly

segregated), but global interactions still occur school-wide (hence across groups).

When the fraction of types is (L = 1/2,M = 1/2) the “high smokers” are too many

for the low equilibrium to arise, and the only surviving equilibrium is the high one where
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Figure 15: Percentage of smokers and basins of attraction of low-level equilibrium in artificial

school for different values of the global interaction parameter. High level equilibrium at

100% smokers unless indicated

everyone smokes. This occurs regardless of the distribution of types along the circle and

of the number of friends. As the fraction of M students falls, the low equilibrium starts

to appear, its basin of attraction becomes greater, and the fractions of smokers in the low

equilibrium falls slightly.

When the fractions are (L = 3/4,M = 1/4) the arrangement of types along the circle

begins to matter. As the strength of local interactions J increases relative to school-wide

interactions, the low equilibrium become more likely (its basin of attraction widens). More-

over, a new, intermediate equilibrium starts appearing, determined by the fraction of (L,M)

types as shown in Figure 19. This intermediate equilibrium appears only under perfect seg-

regation, but not under perfect integration – in the experiments we have carried out. Thus
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Figure 16: Percentage of smokers and basins of attraction of low-level equilibrium in artificial

school for different number of friends and interaction parameters. High level equilibrium at

100% smokers unless indicated

the structure of personal networks within a school (e.g., integrated vs. segregated along

certain demographic traits) seems to have an impact on the smoking prevalence arising in

equilibrium. Within each configuration {%L,%M,J,G} as the number of friends rises the

basin of attraction of the low equilibrium widens again.
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Figure 16: (continued) Percentage of smokers and basins of attraction of low-level equilib-

rium in artificial school for different number of friends and interaction parameters. High

level equilibrium at 100% smokers unless indicated
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Black, hispanic, male, 13yo, in clubs, GPA = 4

Figure 17: Percentage of smokers and basins of attraction of low-level equilibrium in artificial

school for different artificial (homogenous) student. High level equilibrium at 100% smokers

unless indicated
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Figure 18: Percentage of smokers and basins of attraction of low-level equilibrium in artificial

school for different arrangements of students on the circle. High level equilibrium at 100%

smokers in all simulations
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Figure 19: Percentage of smokers and basins of attraction of low-level equilibrium in artificial

school for different groupings of students. Type of students: L=50%, M=50%. High level

equilibrium at 100% smokers unless indicated
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Figure 19: (continued) Percentage of smokers and basins of attraction of low-level equi-

librium in artificial school for different groupings of students. Type of students: L=75%,

M=25%. High level equilibrium at 100% smokers unless indicated

7 Conclusion

In this paper we present a general framework to study models with multiple equilibria in

economies with social interactions. We show that point identification of model parameters

is conceptually distinct from the presence of multiple equilibria, and derive some general

conditions for identification. We then present a two-step estimation strategy that, while less

efficient than the direct maximum likelihood estimator, has two significant advantages: first,

it is computationally feasible as it is several orders of magnitude faster than the direct or the

Dagsvik-Jovanovic (D-J) method; second, it does not rely on making explicit assumptions

about the nature of the selection mechanism across equilibria, as in the D-J method.

We then apply our estimation approach to a version of the Brock-Durlauf binary choice

model with social interactions, using data on teenage smoking. We find statistically signif-

icant evidence of both school-wide and local (within personal networks) interactions. Our

estimates are consistent across specifications that take into account school and local neigh-

borhood attributes. Given our estimates, multiple equilibria are prevalent in our data: the

estimated parameter values for about two thirds of our schools give rise to multiplicity. In
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many cases where multiple equilibria are present, there exists one other equilibrium with a

lower smoking prevalence than that observed in a given school.

Having estimated the parameters of a structural model enables us to run several counter-

factual experiments. In specifications with school-wide interactions only, we show that

reductions in the strength of social interactions may increase or decrease smoking prevalence

depending on whether the school is in the low or intermediate equilibrium. Large reductions

in school-wide interactions eventually make equilibrium multiplicity disappear, with only

the high smoking equilibrium surviving. Thus, tobacco policies aimed at students – which

are associated with lower school-wide social interactions according to our estimates – may

have the counter-intuitive and undesirable effect of actually increasing smoking prevalence

in a school, sometimes by a large amount.

Simulations in settings where both school-wide and local interactions are present show

that reductions in local and/or global interactions, or in the number of friends, make the

basin of attraction of the low smoking equilibrium shrink until it disappears; while this

equilibrium persists, smoking prevalence rises slightly. Reductions in the utility cost of

smoking also make the basin of attraction of low equilibria become smaller, and smoking

prevalence increase. When the low equilibrium disappears, the fraction of smokers in a

school jumps up dramatically to an equilibrium where almost everyone smokes. Finally,

the arrangement of students within a school, and hence the structure of personal networks

(e.g. segregation vs. integration by demographics), can influence the number and types of

smoking equilibria that may arise.

These results should be taken as examples of the kind of policy experiments that one

may carry out having obtained structural parameter estimates for a behavioral model of

smoking with social interactions that exhibits multiple equilibria. However, they should not

be taken literally: here we assume that personal networks are given and that tobacco use

policies are exogenous, the model does not incorporate dynamic features such as addiction,

and we do not take a stand on the way in which agents select a specific equilibrium. This

is left for future work.
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A Additional Results of Monte Carlo Experiments

Monte Carlo single subpopulation experiment - results (intermediate equilibrium)

Evaluation Criterion Direct Two step Direct, 2step initial est

RMSE, parameter C 0.07971 0.00808 0.00812

Bias, parameter C -0.00479 0.00005 0.00008

RMSE, parameter J 0.73115 0.68944 0.68802

Bias, parameter J 0.2121 0.10599 0.10499

Min time 121.42235 0.1987 127.70132

Max time 189.26107 0.35191 188.28

Mean time 159.08873 0.27914 158.77346

Median time 159.83816 0.27635 159.29816

Monte Carlo single subpopulation experiment - results (high equilibrium)}

Evaluation Criterion Direct Two step Direct, 2step initial est

RMSE, parameter C 0.04735 0.04631 0.0463

Bias, parameter C 0.00455 0.0048 0.0048

RMSE, parameter J 0.09303 0.08689 0.08692

Bias, parameter J 0.00058 0.00302 0.0015

Min time 137.35112 0.23884 135.03178

Max time 180.90666 0.3706 179.13963

Mean time 159.40678 0.30305 158.65599

Median time 159.63261 0.30731 158.13407
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B Equilibrium smoking in all schools

School ID N Local int. (J)
Percentage of smokers

Data Simulated eq. Equil. 1 Equil. 2 Equil. 3

77 1191 1.51 10.3 10.1 10.5 42.2 93.1
56 1243 3.07 20.1 17.9 3.9 19.2 99.9
57 504 0.55 23.4 23.4 24.0 - -
33 553 1.89 24.8 20.8 11.3 22.5 98.7
29 788 4.21 16.9 16.1 1.6 16.6 100.0
62 1763 0.43 24.8 26.8 25.3 - -
82 526 3.95 21.9 19.8 1.3 21.3 100.0
72 1125 -1.28 23.6 21.3 23.8 - -
76 843 2.82 17.8 17.4 5.6 17.0 99.9
44 1142 0.69 18.8 18.1 19.3 - -
71 775 0.88 21.7 18.3 22.1 - -
40 523 3.93 24.7 22.0 0.9 24.3 100.0
79 1142 0.52 20.1 23.9 20.7 - -
34 470 1.55 17.4 16.8 19.6 29.2 93.6
41 1644 2.02 6.9 6.7 6.8 27.1 99.1
86 1152 0.78 19.5 18.8 20.5 - -
259 1064 2.52 25.9 22.5 4.4 24.9 99.8
43 451 2.35 4.0 4.0 4.0 27.5 99.7
35 594 2.11 22.2 20.9 9.2 20.7 99.3
78 798 1.38 15.0 16.3 16.9 47.6 85.2
20 610 0.83 14.6 15.6 15.0 - -
268 1001 -0.32 9.8 10.4 9.9 - -
53 1181 0.84 20.6 20.8 20.8 - -
193 406 3.21 13.3 12.6 5.7 12.2 100.0
42 827 2.86 19.7 20.2 4.0 19.2 99.9
74 538 2.44 23.2 21.4 5.9 22.2 99.7
50 1235 1.37 18.8 20.5 19.9 28.8 92.6
162 424 1.78 6.8 6.6 7.7 42.8 95.8
31 1086 2.02 25.0 20.4 10.0 22.8 99.0
91 987 -0.75 26.1 27.7 26.4 - -
267 534 0.98 19.3 21.0 20.6 - -
65 1516 1.81 7.3 6.7 7.7 34.2 97.6
67 598 1.97 25.4 25.6 8.4 24.8 99.0
13 504 6.06 15.3 15.7 0.5 15.1 100.0
23 462 2.83 23.4 20.6 3.4 22.6 99.9
15 462 1.29 16.2 16.2 17.3 - -
25 451 2.78 13.7 7.5 7.8 12.4 99.9
52 639 0.44 7.2 5.5 7.4 - -
58 640 -2.33 33.4 33.1 33.8 - -
269 799 4.41 28.3 30.4 0.3 28.1 100.0
270 487 1.53 16.8 14.4 17.8 22.4 96.1
47 515 2.77 26.2 22.5 3.4 25.7 99.8
271 823 3.4 11.1 8.9 6.7 9.1 100.0
18 466 2.27 20.0 19.1 9.1 17.9 99.6
87 516 2 25.0 23.6 11.9 21.7 98.6
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